3 research outputs found

    Are sample means in multi-armed bandits positively or negatively biased?

    Full text link
    It is well known that in stochastic multi-armed bandits (MAB), the sample mean of an arm is typically not an unbiased estimator of its true mean. In this paper, we decouple three different sources of this selection bias: adaptive \emph{sampling} of arms, adaptive \emph{stopping} of the experiment, and adaptively \emph{choosing} which arm to study. Through a new notion called ``optimism'' that captures certain natural monotonic behaviors of algorithms, we provide a clean and unified analysis of how optimistic rules affect the sign of the bias. The main takeaway message is that optimistic sampling induces a negative bias, but optimistic stopping and optimistic choosing both induce a positive bias. These results are derived in a general stochastic MAB setup that is entirely agnostic to the final aim of the experiment (regret minimization or best-arm identification or anything else). We provide examples of optimistic rules of each type, demonstrate that simulations confirm our theoretical predictions, and pose some natural but hard open problems.Comment: 21 pages. Advances in Neural Information Processing Systems 32 (NeurIPS 2019, Spotlight Presentation

    Challenges in Statistical Analysis of Data Collected by a Bandit Algorithm: An Empirical Exploration in Applications to Adaptively Randomized Experiments

    Full text link
    Multi-armed bandit algorithms have been argued for decades as useful for adaptively randomized experiments. In such experiments, an algorithm varies which arms (e.g. alternative interventions to help students learn) are assigned to participants, with the goal of assigning higher-reward arms to as many participants as possible. We applied the bandit algorithm Thompson Sampling (TS) to run adaptive experiments in three university classes. Instructors saw great value in trying to rapidly use data to give their students in the experiments better arms (e.g. better explanations of a concept). Our deployment, however, illustrated a major barrier for scientists and practitioners to use such adaptive experiments: a lack of quantifiable insight into how much statistical analysis of specific real-world experiments is impacted (Pallmann et al, 2018; FDA, 2019), compared to traditional uniform random assignment. We therefore use our case study of the ubiquitous two-arm binary reward setting to empirically investigate the impact of using Thompson Sampling instead of uniform random assignment. In this setting, using common statistical hypothesis tests, we show that collecting data with TS can as much as double the False Positive Rate (FPR; incorrectly reporting differences when none exist) and the False Negative Rate (FNR; failing to report differences when they exist)..

    Inference for Batched Bandits

    Full text link
    As bandit algorithms are increasingly utilized in scientific studies and industrial applications, there is an associated increasing need for reliable inference methods based on the resulting adaptively-collected data. In this work, we develop methods for inference on data collected in batches using a bandit algorithm. We first prove that the ordinary least squares estimator (OLS), which is asymptotically normal on independently sampled data, is not asymptotically normal on data collected using standard bandit algorithms when there is no unique optimal arm. This asymptotic non-normality result implies that the naive assumption that the OLS estimator is approximately normal can lead to Type-1 error inflation and confidence intervals with below-nominal coverage probabilities. Second, we introduce the Batched OLS estimator (BOLS) that we prove is (1) asymptotically normal on data collected from both multi-arm and contextual bandits and (2) robust to non-stationarity in the baseline reward
    corecore