14 research outputs found

    Workshop Introduction: Computer Entertainment in Cars and Transportation

    Get PDF
    This workshop deals with the potential that entertainment systems and games hold for the transportation context. Travelling by car, bus, plane or by foot can be frustrating and full of negative experiences, but also holds great potential for innovative entertainment application. New off the shelf technology offers great potential beyond old-fashioned rear seat entertainment systems with the sole purpose of keeping kids quiet. The richness of contextual factors and social situations have so far not sufficiently been exploited, which is why this workshop aims at discussing potentials for gaming in transportation

    Designing for frustration and disputes in the family car

    Get PDF
    This article appears with the express permission of the publisher, IGI Global.Families spend an increasing amount of time in the car carrying out a number of activities including driving to work, caring for children and co-ordinating drop-offs and pickups. While families travelling in cars may face stress from difficult road conditions, they are also likely to be frustrated by coordinating a number of activities and resolving disputes within the confined space of car. A rising number of in-car infotainment and driver-assistance systems aim to help reduce the stress from outside the vehicle and improve the experience of driving but may fail to address sources of stress from within the car. From ethnographic studies of family car journeys, we examine the work of parents in managing multiple stresses while driving, along with the challenges of distractions from media use in the car. Keeping these family extracts as a focus for analysis, we draw out some design considerations that help build on the observations from our empirical work.Microsoft Research and the Dorothy Hodgkin Awar

    ’Eyes free’ in-car assistance: parent and child passenger collaboration during phone calls

    Get PDF
    This paper examines routine family car journeys, looking specifically at how passengers assist during a mobile telephone call while the drivers address the competing demands of handling the vehicle, interacting with various artefacts and controls in the cabin, and engage in co-located and remote conversations while navigating through busy city roads. Based on an analysis of video fragments, we see how drivers and child passengers form their conversations and requests around the call so as to be meaningful and paced to the demands, knowledge and abilities of their cooccupants, and how the conditions of the road and emergent traffic are oriented to and negotiated in the context of the social interaction that they exist alongside. The study provides implications for the design of car-based collaborative media and considers how hands- and eyesfree natural interfaces could be tailored to the complexity of activities in the car and on the road

    I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR

    Get PDF
    This paper explores the use of VR Head Mounted Displays (HMDs) in-car and in-motion for the first time. Immersive HMDs are becoming everyday consumer items and, as they offer new possibilities for entertainment and productivity, people will want to use them during travel in, for example, autonomous cars. However, their use is confounded by motion sickness caused in-part by the restricted visual perception of motion conflicting with physically perceived vehicle motion (accelerations/rotations detected by the vestibular system). Whilst VR HMDs restrict visual perception of motion, they could also render it virtually, potentially alleviating sensory conflict. To study this problem, we conducted the first on-road and in motion study to systematically investigate the effects of various visual presentations of the real-world motion of a car on the sickness and immersion of VR HMD wearing passengers. We established new baselines for VR in-car motion sickness, and found that there is no one best presentation with respect to balancing sickness and immersion. Instead, user preferences suggest different solutions are required for differently susceptible users to provide usable VR in-car. This work provides formative insights for VR designers and an entry point for further research into enabling use of VR HMDs, and the rich experiences they offer, when travelling

    Are We There Yet? A Probing Study to Inform Design for the Rear Seat of Family Cars

    No full text
    Part 1: Long and Short PapersInternational audienceWhen researching interactive systems in the car, the design space can be divided into the following areas: driver, front seat passenger and rear seat. The latter has so far not been sufficiently addressed in HCI research, which results in an absence of implications for interaction designs in that space. This work presents a cultural probing study investigating the activities and the technology usage in the rear seat as social and physical space. The study was conducted with 20 families over a period of four weeks and unveiled aspects relevant for HCI research: aspects of diversion, educational motivation, togetherness, food as activity, physical space, perception of safety, and mobile computing. In relation to these areas, implications for the design and integration of interactive technology in the rear seat area are deduced. We show that cultural probing in the car is a promising and fruitful approach to get insights on passenger behavior and requirements for interactive systems. To improve the rear seat area and to show the potential of probing results to inform design, a design proposal for an interactive rear seat game called RiddleRide is introduced

    BlokCar: Creating Interactive In-Car Entertainment System For Children

    Get PDF
    The research proposes an in-car entertainment system for children to relieve their in-car boredom and further enhance the travel experience. While more and more attention has already been paid on human-car interaction, there is still very limited research considering the interaction between back seat passengers and the car. This project aims to explore the new research area and solve the problems for the children passengers. Based on the research (Price & Matthews, 2013; Wilfinger et al., 2011), many parents reported the quality time they spent with their children in the car was invaluable. Due to the limited space of a car, car travelling is a perfect opportunity to pull a family together and build the memory. However, the travel experience with children is usually not so pleasant for the parents. More than 60% of parents in the survey (Daily Mail, 2011) admitted that travelling without children made them happier. Besides, driving with children also possibly compromise driving safety. According to the previous studies (Koppel, Charlton, Kopinathan, & Taranto, 2011; Wilfinger et al., 2011), children in the car are 12 times more distracting than using cell phone while driving. And the most distracting child-related activities are 1. Looking back at their children, 2. Helping the children and 3. Playing with their children. If searching the keywords about traveling with children, plenty of strategies are suggested to help parents overcome the difficulty. Among them, one of the most mentioned methods is entertainment. Therefore, I further do the user research to understand the real users and their travel experience especially on the entertainment devices. And I found they are having a hard time in preparing the entertainment devices for their children, figuring out what can be played in the car, selecting the adequate toys for the limited space and worrying about the children’s eyes health. With the findings and insights, I generate the designs iteratively. Finally I proposed a system composed of three major components- 1. Mobile Application, 2. Interactive Block- BlokCar and 3. AR Interactive Window. The mobile application helps to better plan and prepare for the trip and also provide a variety of entertainment resources for the users during the car travel. When they arrive, the application records the travel history automatically and generate the memorable data. On the children’s side, they play with the interactive block which is connected with the mobile application so both of the parents or the children can engage in. Instead of allowing children to play games on the digital devices, the interactive block attempts to entertain children without compromising the eyes health and to create the variations of toys. Finally, the AR interactive window broadens the playground and allows the children to interact with the surroundings. The whole system is cross-media interactive and location-based. It aims not only to solve the problems of the current travel experience, but also to create the values of a family trip

    Challenges in passenger use of mixed reality headsets in cars and other transportation

    Get PDF
    This paper examines key challenges in supporting passenger use of augmented and virtual reality headsets in transit. These headsets will allow passengers to break free from the restraints of physical displays placed in constrained environments such as cars, trains and planes. Moreover, they have the potential to allow passengers to make better use of their time by making travel more productive and enjoyable, supporting both privacy and immersion. However, there are significant barriers to headset usage by passengers in transit contexts. These barriers range from impediments that would entirely prevent safe usage and function (e.g. motion sickness) to those that might impair their adoption (e.g. social acceptability). We identify the key challenges that need to be overcome and discuss the necessary resolutions and research required to facilitate adoption and realize the potential advantages of using mixed reality headsets in transit

    How Visual Motion Cues Can Influence Sickness For In-Car VR

    Full text link
    This video demonstrates our research into the use of VR Head Mounted Displays (HMDs) in-car and in-motion. Immersive HMDs offer new possibilities for entertainment and productivity during travel. However, their use is confounded by motion sickness, caused in-part by the conflict between visually and physically perceived motion. We examine how visual conveyance of motion affects motion sickness during in-car VR

    Experience Prototyping for Automotive Applications

    Get PDF
    In recent years, we started to define our life through experiences we make instead of objectswe buy. To attend a concert of our favorite musician may be more important for us thanowning an expensive stereo system. Similarly, we define interactive systems not only by thequality of the display or its usability, but rather by the experiences we can make when usingthe device. A cell phone is primarily built for making calls and receiving text messages,but on an emotional level it might provide a way to be close to our loved ones, even thoughthey are far away sometimes. When designing interactive technology, we do not only haveto answer the question how people use our systems, but also why they use them. Thus,we need to concentrate on experiences, feelings and emotions arising during interaction.Experience Design is an approach focusing on the story that a product communicates beforeimplementing the system. In an interdisciplinary team of psychologists, industrial designers, product developers andspecialists in human-computer interaction, we applied an Experience Design process to theautomotive domain. A major challenge for car manufacturers is the preservation of theseexperiences throughout the development process. When implementing interactive systemsengineers rely on technical requirements and a set of constraints (e.g., safety) oftentimescontradicting aspects of the designed experience. To resolve this conflict, Experience Prototypingis an important tool translating experience stories to an actual interactive product. With this thesis I investigate the Experience Design process focusing on Experience Prototyping.Within the automotive context, I report on three case studies implementing threekinds of interactive systems, forming and following our approach. I implemented (1) anelectric vehicle information system called Heartbeat, communicating the state of the electricdrive and the batteries to the driver in an unobtrusive and ensuring way. I integrated Heartbeatinto the dashboard of a car mock-up with respect to safety and space requirements butat the same time holding on to the story in order to achieve a consistent experience. With (2)the Periscope I implemented a mobile navigation device enhancing the social and relatednessexperiences of the passengers in the car. I built and evaluated several experience prototypesin different stages of the design process and showed that they transported the designed experiencethroughout the implementation of the system. Focusing on (3) the experience offreehand gestures, GestShare explored this interaction style for in-car and car-to-car socialexperiences. We designed and implemented a gestural prototypes for small but effectivesocial interactions between drivers and evaluated the system in the lab and and in-situ study. The contributions of this thesis are (1) a definition of Experience Prototyping in the automotivedomain resulting from a literature review and my own work, showing the importanceand feasibility of Experience Prototyping for Experience Design. I (2) contribute three casestudies and describe the details of several prototypes as milestones on the way from a anexperience story to an interactive system. I (3) derive best practices for Experience Prototypingconcerning their characteristics such as fidelity, resolution and interactivity as well asthe evaluation in the lab an in situ in different stages of the process.Wir definieren unser Leben zunehmend durch Dinge, die wir erleben und weniger durchProdukte, die wir kaufen. Ein Konzert unseres Lieblingsmusikers zu besuchen kann dabeiwichtiger sein, als eine teure Stereoanlage zu besitzen. Auch interaktive Systeme bewertenwir nicht mehr nur nach der QualitĂ€t des Displays oder der Benutzerfreundlichkeit, sondernauch nach Erlebnissen, die durch die Benutzung möglich werden. Das Smartphone wurdehauptsĂ€chlich zum Telefonieren und Schreiben von Nachrichten entwickelt. Auf einer emotionalenEbene bietet es uns aber auch eine Möglichkeit, wichtigen Personen sehr nah zusein, auch wenn sie manchmal weit weg sind. Bei der Entwicklung interaktiver Systememüssen wir uns daher nicht nur fragen wie, sondern auch warum diese benutzt werden. Erlebnisse,Gefühle und Emotionen, die wĂ€hrend der Interaktion entstehen, spielen dabei einewichtige Rolle. Experience Design ist eine Disziplin, die sich auf Geschichten konzentriert,die ein Produkt erzĂ€hlt, bevor es tatsĂ€chlich implementiert wird. In einem interdisziplinĂ€ren Team aus Psychologen, Industrie-Designern, Produktentwicklernund Spezialisten der Mensch-Maschine-Interaktion wurde ein Prozess zur Erlebnis-Gestaltung im automobilen Kontext angewandt. Die Beibehaltung von Erlebnissen über dengesamten Entwicklungsprozess hinweg ist eine große Herausforderung für Automobilhersteller.Ingenieure hĂ€ngen bei der Implementierung interaktiver Systeme von technischen,sicherheitsrelevanten und ergonomischen Anforderungen ab, die oftmals dem gestaltetenErlebnis widersprechen. Die Bereitstellung von Erlebnis-Prototypen ermöglicht die Übersetzungvon Geschichten in interaktive Produkte und wirkt daher diesem Konflikt entgegen. Im Rahmen dieser Dissertation untersuche ich den Prozess zur Erlebnis-Gestaltung hinsichtlichder Bedeutung von Erlebnis-Prototypen. Ich berichte von drei Fallbeispielen im automobilenBereich, die die Gestaltung und Implementierung verschiedener interaktiver Systemenumfassen. (1) Ein Informationssystem für Elektrofahrzeuge, der Heartbeat, macht den Zustanddes elektrischen Antriebs und den Ladestand der Batterien für den Fahrer visuell undhaptisch erlebbar. Nach der Implementierung mehrerer Prototypen wurde Heartbeat unterBerücksichtigung verschiedener technischer und sicherheitsrelevanter Anforderungen in dieArmaturen eines Fahrzeugmodells integriert, ohne dass dabei das gestaltete Erlebnis verlorengegangen ist. (2) Das Periscope ist ein mobiles NavigationsgerĂ€t, das den Insassensoziale Erlebnisse ermöglicht und das Verbundenheitsgefühl stĂ€rkt. Durch die Implementierungmehrere Erlebnis-Prototypen und deren Evaluation in verschiedenen Phasen des Entwicklungsprozesseskonnten die gestalteten Erlebnisse konsistent erhalten werden. (3) ImProjekt GestShare wurde das Potential der Interaktion durch Freiraumgesten im Fahrzeuguntersucht. Dabei standen ein Verbundenheitserlebnis des Fahrers und soziale Interaktionenmit Fahrern anderer Fahrzeuge im Fokus. Es wurden mehrere Prototypen implementiert undauch in einer Verkehrssituation evaluiert. Die wichtigsten BeitrĂ€ge dieser Dissertation sind (1) eine intensive Betrachtung und Anwendungvon Erlebnis-Prototypen im Auto und deren Relevanz bei der Erlebnis-Gestaltung,beruhend auf einer Literaturauswertung und der eigenen Erfahrung innerhalb des Projekts; (2) drei Fallstudien und eine detaillierte Beschreibung mehrere Prototypen in verschiedenenPhasen des Prozesses und (3) Empfehlungen zu Vorgehensweisen bei der Erstellung vonErlebnis-Prototypen hinsichtlich der Eigenschaften wie NĂ€he zum finalen Produkt, Anzahlder implementierten Details und InteraktivitĂ€t sowie zur Evaluation im Labor und in tatsĂ€chlichenVerkehrssituationen in verschiedenen Phasen des Entwicklungsprozesses

    Interaction in Digital Ecologies with Connected and Non-Connected Cars

    Get PDF
    corecore