4 research outputs found

    The Legality and Effectiveness of Smart Contracts, As Well As Its Impact on Traditional Concepts of Contract Law

    Get PDF
    Although in the world of law, smart contracts are still a new concept, they have already given rise to many possibilities. common examinations of smart contracts, a modern innovation aimed at displacing traditional contract law. Some claim that smart contracts will completely replace traditional contracts while others claim that they will spell the end of contract law. This research investigates the role of “Smart Contracts,” a recently invented technology. What sets them apart is the use of computers to automate the execution of these legal agreements. This article further examines how smart contracts differ from traditional contracts from a legal aspect. It also explains the differences between strong and weak smart contracts, as well as how smart contracts work and fit into current contract law about revocation and modification. Since Smart Contracts are merely a new proactive self-help that politicians and judges should not restrict. While some extreme examples of strong smart contracts may require regulation, courts and legislators should foster an environment in which smart contracts are considered separate types of contracts. As a result, a technique has been devised for dealing with any concerns that may arise because of the Smart Contract. For legal purposes, researchers distinguish between traditional contracts and smart contracts based on their strong and weak smart contracts. The study relied on an examination of already published information as well as any related papers obtained from public libraries, websites, and data from previously completed surveys, among other sources. Finally, based on comparative research, the study came to some plausible findings about the legality of Smart Contracts and made some recommendations

    Distributed Space Traffic Management Solutions with Emerging New Space Industry

    Get PDF
    Day-to-day services, from weather forecast to logistics, rely on space-based infrastructures whose integrity is crucial to stakeholders and end-users worldwide. Current trends point towards congestion of the near-Earth space environment increasing at a rate greater than existing systems support, and thus demand novel cost-efficient approaches to traffic detection, characterization, tracking, and management to ensure space remains a safe, integral part of societies and economies worldwide. Whereas machine-learning (ML) and artificial intelligence (AI) have been extensively proposed to address congestion and alleviate big-data problems of the future, little has been done so far to tackle the need for transnational coordination and conflict-resolution in the context of space traffic management (STM). In STM, there is an ever-growing need for distributing information and coordinating actions (e.g., avoidance manoeuvres) to reduce the operational costs borne by individual entities and to decrease the latencies of actionable responses taken upon the detection of hazardous conditions by one-to-two orders of magnitude. However, these needs are not exclusive to STM, as evidenced by the widespread adoption of solutions to distributing, coordinating, and automating actions in other industries such as air traffic management (ATM), where a short-range airborne collision avoidance system (ACAS) automatically coordinates evasive manoeuvres whenever a conjunction is detected. Within this context, this paper aims at establishing a roadmap of promising technologies (e.g., blockchain), protocols and processes that could be adapted from different domains (railway, automotive, aerial, and maritime) to build an integrated traffic coordination and communication architecture to simplify and harmonise stakeholders’ satellite operations. This paper is organised into seven sections. First, Section 1 introduces the problem of STM, highlighting its complexity. Following this introduction, Section 2 discusses needs and requirements of various stakeholders such as commercial operators, space situational awareness (SSA) service providers, launch-service providers, satellite and constellation owners, governmental agencies, regulators, and insurance companies. Then, Section 3 addresses existing gaps and challenges in STM, focusing on globally coordinated approaches. Next, Section 4 reviews technologies for distributed, secure, and persistent communications, and proposed solutions to address some of these challenges from non-space sectors. Thereafter, Section 5 briefly covers the history of STM proposals and presents the state-of-the-art solution being proposed for modern STM. Following this review, Section 6 devises a step-by-step plan for exploiting and deploying some of the identified technologies within a five-to-ten-year timeline to close several existing gaps. Finally, Section 7 concludes the paper
    corecore