1,064 research outputs found

    Re-configurable VoiP interactive response

    Get PDF
    Organizational alliances are rapidly being formed as a means for effective cooperation with a common goal within a targeted value chain. The combination of such communication, coordination and cooperation leads to new organisational forms and scenarios within the Digital Ecosystem space that require technological support. Convergence refers to the move towards concurrently coupled telecommunications services with enterprise and internet data.Voice over Internet Protocol (VoIP) is a telecommunications solution that uses a data network such as the internet to transport voice traffic. VoIP data is transported alongside other data over an existing network. VoIP has introduced significant cost savings, functionality and convenience that is functionally comparable to traditional telecommunication offerings. However, current IT&T solutions have failed to use this powerful technology beyond simple telephony applicattoos.This paper presents a flexible VoIP Interactive Voice Response (IVR) interface that offers simplified convergence of telecommunications services that are coupled with enterprise and internet data

    A pluggable service platform architecture for e-commerce

    Get PDF
    In the beginning of the e-commerce era, retailers mostly adopted vertically integrated solutions to control the entire e-commerce value chain. However, they began to realize that to achieve agility, a better approach would be to focus on certain core capabilities and then create a partner ecosystem around them. From a technical point of view, this means it is advised to have a lightweight platform architecture with small core e-commerce functionality which can be extended by additional services from third party providers. In a typical e-commerce ecosystem with diverse information systems of network partners, integration and interoperability become critical factors to enable seamless coordination among the partners. Furthermore an increasing adoption of cloud computing technology could be observed resulting in more challenging integration scenarios involving cloud services. Thus, an e-commerce platform is required that suites the advanced needs for flexible and agile service integration. Therefore, this paper aims to present a reference architecture of a novel pluggable service platform for e-commerce. We investigate on currently available online shop platform solutions and integration platforms in the market. Based on the findings and motivated by literature on service-oriented design, we develop an architecture of a service-based pluggable platform for online retailers. This design is then instantiated by means of a prototype for an e-commerce returns handling scenario to demonstrate the feasibility of our architecture design

    Distributed Simulation in Industry

    Get PDF
    Csaba Attila Boer was born in Satu Mare, Romania, on 29 October, 1975. He completed his secondary education at Kölcsey Ferenc High School, in Satu Mare, in 1994. In the same year he started his higher education at Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania, where he received his B.Sc. degree in Computer Science, in 1998, and his M.Sc. degree with major in Information Systems, specialization Designing and Implementing Complex Systems, in 1999. During these years, he obtained fellowships at the Eötvös Lóránd University, and at the Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary within the Central European Exchange Program for University Studies (CEEPUS). Since 1999, he has been affiliated with the Computer Science Department, Faculty of Economics at Erasmus University Rotterdam, The Netherlands. There, he worked as a researcher for one year, studying the storage and retrieval of discrete event simulation models, research that resulted in three scientific articles. Between 2000 and 2004, he was associated with the same department as a Ph.D. candidate aiming to research the area of distributed simulation and its application in industry. His topic being close to the research carried out at the Faculty of Technology, Policy and Management, Delft University of Technology, and the BETADE research program, he started to collaborate with researchers from these groups, getting involved in two joint practical case study projects. This collaboration resulted in seven joint scientific articles, presented at various international conferences. Furthermore, Csaba has maintained international contacts with researchers from the distributed simulation area. He has been invited twice to Brunel University, London to give a presentation concerning the application of distributed simulation in industry. Currently, he is working as a simulation consultant atGedistribueerde simulatie wordt binnen de defensie in brede kring geaccepteerd en toegepast, maar het heeft in de industrie geen voet aan de grond gekregen. In dit proefschrift onderzoeken we de redenen voor dit fenomeen door te bestuderen wat de industrie verwacht op het terrein van de gedistribueerde simulatie. In het algemeen worden in de industrie simulatiemodellen ontworpen en ontwikkeld met COTS (“commercial-off-the-shelf”) simulatiepakketten. Echter, de bestaande architecturen voor gedistribueerde simulatie binnen defensie zijn niet gericht op het koppelen van modellen gebouwd met COTS simulatiepakketten. Om de industrie te motiveren gedistribueerde simulatie te accepteren en te gebruiken moet men derhalve ernaar streven het mogelijk te maken om modellen, die gebouwd zijn met deze pakketten, aan elkaar te koppelen zonder dat dat al te veel inspanning vereist van de modelbouwers. Uitgaande van een onderzoek onder experts in dit domein, stellen we in dit proefschrift een pakket van eisen voor voor het ontwerp en ontwikkelen van gedistribueerde simulatiearchitecturen dat de industriegemeenschap zal motiveren om gedistribueerde simulatie te accepteren en toe te passen. Daarnaast presenteren we een lichtgewicht architectuur voor gedistribueerde simulatie die met succes toegepast is in twee industriële projecten, en die in grote mate voldoet aan het voorgestelde pakket van eisen.While distributed simulation is widely accepted and applied in defence, it has not gathered ground yet in industry. In this thesis we investigate the reasons behind this phenomenon by surveying the expectation of industry with respect to distributed simulation solutions. Simulation models in industry are mainly designed and developed in commercial-off-the-shelf (COTS) simulation packages. The existing distributed simulation architectures in defence, however, do not focus on coupling models created in COTS simulation packages. Therefore, in order to motivate the industrial community to easily accept and use distributed simulation, one should strive to couple models built in these packages. Further, coupling these models should be possible without needing too much extra effort from modellers. In this thesis, based on a survey with experts in domain, we propose a list of requirements for designing and developing distributed simulation architectures that would encourage the industrial community to accept and apply distributed simulation. Furthermore, we present a lightweight distributed simulation architecture which has been successfully applied in two industrial projects, and satisfies to a large extent the proposed requirements

    Tracebook : a dynamic checklist support system

    Get PDF
    It has recently been demonstrated that checklist scan enable significant improvements to patient safety. However, their clinical acceptance is significantly lower than expected. This is due to the lack of good support systems. Specifically, support systems are too static: this holds for paper-based support as well as for electronic systems that digitize paper-based support naively. Both approaches are independent from clinical process and clinical context. In this paper, we propose a process-oriented and context-aware dynamic checklist support system: Tracebook. This system supports the execution of complex clinical processes and rules involving data from Electronic Medical Record systems. Workflow activities and forms are specific to individual patients based on clinical rules and they are dispatched to the right user automatically based on a process model. Besides describing the Tracebook functionality in general, this paper demonstrates the support system specifically on an example application that we are preparing for a controlled clinical evaluation. At last we discuss the difference between Tracebook and other support systems which also rely on a checklist format

    MyPHRMachines : personal health desktops in the cloud

    Get PDF
    Personal Health Records (PHRs) should remain the lifelong property of patients, who should be enabled to show them conveniently and securely to selected caregivers and institutions. Current solutions for PHRs focus on standard data exchange formats and transformations to move data across health information systems. In this paper we present MyPHRMachines, a PHR system taking a radically new architectural solution to health record interoperability. In MyPHRMachines, health-related data and the application software to view and/or analyze it are separately deployed in the PHR system. After uploading their medical data to MyPHRMachines, patients can access them again from remote virtual machines that contain the right software to visualize and analyze them without any conversion. Patients can share their remote virtual machine session with selected caregivers, who will need only aWeb browser to access the pre-loaded fragments of their lifelong PHR. We discuss a prototype of MyPHRMachines applied to two use cases, i.e. radiology image sharing and personalized medicine. The first use case demonstrates the ability of patients to build robust PHRs across the space and time dimensions, whereas the second use case demonstrates the ability of MyPHRMachines to preserve the privacy of PHR data deployed in the cloud
    corecore