1,403 research outputs found

    Upper Bounds on the Capacity of Binary Channels with Causal Adversaries

    Full text link
    In this work we consider the communication of information in the presence of a causal adversarial jammer. In the setting under study, a sender wishes to communicate a message to a receiver by transmitting a codeword (x1,...,xn)(x_1,...,x_n) bit-by-bit over a communication channel. The sender and the receiver do not share common randomness. The adversarial jammer can view the transmitted bits xix_i one at a time, and can change up to a pp-fraction of them. However, the decisions of the jammer must be made in a causal manner. Namely, for each bit xix_i the jammer's decision on whether to corrupt it or not must depend only on xjx_j for jij \leq i. This is in contrast to the "classical" adversarial jamming situations in which the jammer has no knowledge of (x1,...,xn)(x_1,...,x_n), or knows (x1,...,xn)(x_1,...,x_n) completely. In this work, we present upper bounds (that hold under both the average and maximal probability of error criteria) on the capacity which hold for both deterministic and stochastic encoding schemes.Comment: To appear in the IEEE Transactions on Information Theory; shortened version appeared at ISIT 201

    On AVCs with Quadratic Constraints

    Full text link
    In this work we study an Arbitrarily Varying Channel (AVC) with quadratic power constraints on the transmitter and a so-called "oblivious" jammer (along with additional AWGN) under a maximum probability of error criterion, and no private randomness between the transmitter and the receiver. This is in contrast to similar AVC models under the average probability of error criterion considered in [1], and models wherein common randomness is allowed [2] -- these distinctions are important in some communication scenarios outlined below. We consider the regime where the jammer's power constraint is smaller than the transmitter's power constraint (in the other regime it is known no positive rate is possible). For this regime we show the existence of stochastic codes (with no common randomness between the transmitter and receiver) that enables reliable communication at the same rate as when the jammer is replaced with AWGN with the same power constraint. This matches known information-theoretic outer bounds. In addition to being a stronger result than that in [1] (enabling recovery of the results therein), our proof techniques are also somewhat more direct, and hence may be of independent interest.Comment: A shorter version of this work will be send to ISIT13, Istanbul. 8 pages, 3 figure
    corecore