80,665 research outputs found

    A Combined CNN and LSTM Model for Arabic Sentiment Analysis

    Get PDF
    Deep neural networks have shown good data modelling capabilities when dealing with challenging and large datasets from a wide range of application areas. Convolutional Neural Networks (CNNs) offer advantages in selecting good features and Long Short-Term Memory (LSTM) networks have proven good abilities of learning sequential data. Both approaches have been reported to provide improved results in areas such image processing, voice recognition, language translation and other Natural Language Processing (NLP) tasks. Sentiment classification for short text messages from Twitter is a challenging task, and the complexity increases for Arabic language sentiment classification tasks because Arabic is a rich language in morphology. In addition, the availability of accurate pre-processing tools for Arabic is another current limitation, along with limited research available in this area. In this paper, we investigate the benefits of integrating CNNs and LSTMs and report obtained improved accuracy for Arabic sentiment analysis on different datasets. Additionally, we seek to consider the morphological diversity of particular Arabic words by using different sentiment classification levels.Comment: Authors accepted version of submission for CD-MAKE 201

    Clustering Web Search Results For Effective Arabic Language Browsing

    Full text link
    The process of browsing Search Results is one of the major problems with traditional Web search engines for English, European, and any other languages generally, and for Arabic Language particularly. This process is absolutely time consuming and the browsing style seems to be unattractive. Organizing Web search results into clusters facilitates users quick browsing through search results. Traditional clustering techniques (data-centric clustering algorithms) are inadequate since they don't generate clusters with highly readable names or cluster labels. To solve this problem, Description-centric algorithms such as Suffix Tree Clustering (STC) algorithm have been introduced and used successfully and extensively with different adapted versions for English, European, and Chinese Languages. However, till the day of writing this paper, in our knowledge, STC algorithm has been never applied for Arabic Web Snippets Search Results Clustering.In this paper, we propose first, to study how STC can be applied for Arabic Language? We then illustrate by example that is impossible to apply STC after Arabic Snippets pre-processing (stem or root extraction) because the Merging process yields many redundant clusters. Secondly, to overcome this problem, we propose to integrate STC in a new scheme taking into a count the Arabic language properties in order to get the web more and more adapted to Arabic users. The proposed approach automatically clusters the web search results into high quality, and high significant clusters labels. The obtained clusters not only are coherent, but also can convey the contents to the users concisely and accurately. Therefore the Arabic users can decide at a glance whether the contents of a cluster are of interest....

    Arabic Language Sentiment Analysis on Health Services

    Get PDF
    The social media network phenomenon leads to a massive amount of valuable data that is available online and easy to access. Many users share images, videos, comments, reviews, news and opinions on different social networks sites, with Twitter being one of the most popular ones. Data collected from Twitter is highly unstructured, and extracting useful information from tweets is a challenging task. Twitter has a huge number of Arabic users who mostly post and write their tweets using the Arabic language. While there has been a lot of research on sentiment analysis in English, the amount of researches and datasets in Arabic language is limited. This paper introduces an Arabic language dataset which is about opinions on health services and has been collected from Twitter. The paper will first detail the process of collecting the data from Twitter and also the process of filtering, pre-processing and annotating the Arabic text in order to build a big sentiment analysis dataset in Arabic. Several Machine Learning algorithms (Naive Bayes, Support Vector Machine and Logistic Regression) alongside Deep and Convolutional Neural Networks were utilized in our experiments of sentiment analysis on our health dataset.Comment: Authors accepted version of submission for ASAR 201

    Hybrid Arabic–French machine translation using syntactic re-ordering and morphological pre-processing

    Get PDF
    This is an accepted manuscript of an article published by Elsevier BV in Computer Speech & Language on 08/11/2014, available online: https://doi.org/10.1016/j.csl.2014.10.007 The accepted version of the publication may differ from the final published version.Arabic is a highly inflected language and a morpho-syntactically complex language with many differences compared to several languages that are heavily studied. It may thus require good pre-processing as it presents significant challenges for Natural Language Processing (NLP), specifically for Machine Translation (MT). This paper aims to examine how Statistical Machine Translation (SMT) can be improved using rule-based pre-processing and language analysis. We describe a hybrid translation approach coupling an Arabic–French statistical machine translation system using the Moses decoder with additional morphological rules that reduce the morphology of the source language (Arabic) to a level that makes it closer to that of the target language (French). Moreover, we introduce additional swapping rules for a structural matching between the source language and the target language. Two structural changes involving the positions of the pronouns and verbs in both the source and target languages have been attempted. The results show an improvement in the quality of translation and a gain in terms of BLEU score after introducing a pre-processing scheme for Arabic and applying these rules based on morphological variations and verb re-ordering (VS into SV constructions) in the source language (Arabic) according to their positions in the target language (French). Furthermore, a learning curve shows the improvement in terms on BLEU score under scarce- and large-resources conditions. The proposed approach is completed without increasing the amount of training data or radically changing the algorithms that can affect the translation or training engines.This paper is based upon work supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant number 356097-08.Published versio
    corecore