3 research outputs found

    Ridesourcing and Travel Demand: Potential Effects of Transportation Network Companies in Bogotá

    Get PDF
    This paper proposes a modal-shift analysis methodology based on a mix of small-scale primary data and big data sources to estimate the total amount of trips that are reallocated to transportation network companies (TNCs) services in Bogotá, Colombia. The analysis is focused on the following four modes: public transportation, private vehicles, conventional taxis, and TNC services. Based on a stated preferences survey and secondary databases of travel times and costs, the paper proposes a methodology to estimate the reallocation of travel demand once TNCs start operating. Results suggests that approximately one third of public transportation trips are potentially transferred to TNCs. Moreover, potential taxi and private vehicle–transferred trips account for almost 30% of the new TNC demand. Additionally, approximately half of the trips that are reallocated from public transport demand can be considered as complementary, while the remaining share can be considered as potential replacing trips of public transportation. The paper also estimates the potential increase in Vehicle-km travelled in each of the modes before and after substitution as a proxy to the effects of demand reallocation on sustainability, finding increases between 1.3 and 14.5 times the number of Vehicle-km depending on the mode. The paper highlights the role of open data and critical perspectives on available information to analyze potential scenarios of the introduction of disruptive technologies and their spatial, social, and economic implications

    Demand Modeling for Taxi and Ride-hailing Transport Services (RTS)

    Get PDF
    The rapid growth of Ride-hailing Transport Services (RTS) demand is found to have caused a fierce market share battle with conventional taxis in previous decades. In selecting a taxi or RTS, understanding the factors affecting passenger’s decisions is substantial for better development and more reliable transit service. The aims of this study to evaluate the demand for taxis and RTS in the Jakarta Greater Area, Indonesia, using the demand-supply and dynamic models. It has been conducted by using 519 respondents, with the model inputs consisting of waiting and travel time, trip costs, and the destination of the conventional passengers. Moreover, the choice between taxi and RTS was analyzed based on the stated preferences of respondents. The results showed that the waiting and travel time, as well as costs per trip of RTS, were 1.49 and 2.67 minutes lower and IDR10,902 cheaper than a taxi, respectively. The factors influencing the demand for these transport modes were also the number of trips per-day, mode share, the average vehicle occupancy, operating hours/day, passengers and driver waiting time, as well as travel period. In the dynamic model, the addition of variable service area, peak hour, and average vehicles speed was subsequently observed. Based on the results, the requests for these transport modes in the Greater Area of Jakarta were 64,494 and 55,811 vehicle units for the demand-supply and dynamic models, respectively. This proved that the dynamic model was better than the demand-supply, due to the added parameters representing the area’s traffic characteristics. Additionally, subsequent future research are expected to focus on modeling of taxi and RTS demands through the global positioning system data, as well as analysis using machine learning and deep learning. Doi: 10.28991/CEJ-2023-09-05-03 Full Text: PD

    Approximations of choice probabilities in mixed logit models

    No full text
    corecore