19,729 research outputs found

    Critically loaded multi-server queues with abandonments, retrials, and time-varying parameters

    Full text link
    In this paper, we consider modeling time-dependent multi-server queues that include abandonments and retrials. For the performance analysis of those, fluid and diffusion models called "strong approximations" have been widely used in the literature. Although they are proven to be asymptotically exact, their effectiveness as approximations in critically loaded regimes needs to be investigated. To that end, we find that existing fluid and diffusion approximations might be either inaccurate under simplifying assumptions or computationally intractable. To address that concern, this paper focuses on developing a methodology by adjusting the fluid and diffusion models so that they significantly improve the estimation accuracy. We illustrate the accuracy of our adjusted models by performing a number of numerical experiments

    Many-server queues with customer abandonment: numerical analysis of their diffusion models

    Full text link
    We use multidimensional diffusion processes to approximate the dynamics of a queue served by many parallel servers. The queue is served in the first-in-first-out (FIFO) order and the customers waiting in queue may abandon the system without service. Two diffusion models are proposed in this paper. They differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. To analyze these diffusion models, we develop a numerical algorithm for computing the stationary distribution of such a diffusion process. A crucial part of the algorithm is to choose an appropriate reference density. Using a conjecture on the tail behavior of a limit queue length process, we propose a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations for many-server queues, sometimes for queues with as few as twenty servers

    Deterministic Sampling and Range Counting in Geometric Data Streams

    Get PDF
    We present memory-efficient deterministic algorithms for constructing epsilon-nets and epsilon-approximations of streams of geometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approximation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regression depth, the Thiel-Sen estimator, and the least median of squares. Our algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are inverse-polylogarithmic. We also include a lower bound for non-iceberg geometric queries.Comment: 12 pages, 1 figur

    Discrete Approximations of Metric Measure Spaces of Controlled Geometry

    Full text link
    We find a necessary and sufficient condition for a doubling metric space to carry a (1,p)-Poincare inequality. The condition involves discretizations of the metric space and Poincare inequalities on graphs.Comment: 23 Page
    • …
    corecore