194,295 research outputs found

    The performance of object decomposition techniques for spatial query processing

    Get PDF

    Rough Set Theory for Real Estate Appraisal: An Application to Directional District of Naples

    Get PDF
    This paper proposes an application of Rough Set Theory (RST) to the real estate field, in order to highlight its operational potentialities for mass appraisal purposes. RST allows one to solve the appraisal of real estate units regardless of the deterministic relationship between characteristics that contribute to the formation of the property market price and the same real estate prices. RST was applied to a real estate sample (office units located in Directional District of Naples) and was also integrated with a functional extension so-called Valued Tolerance Relation (VTR) in order to improve its flexibility. A multiple regression analysis (MRA) was developed on the same real estate sample with the aim to compare RST and MRA results. The case study is followed by a brief discussion on basic theoretical connotations of this methodology

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    The computational magic of the ventral stream

    Get PDF
    I argue that the sample complexity of (biological, feedforward) object recognition is mostly due to geometric image transformations and conjecture that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations.

In the first part of the paper I describe a class of simple and biologically plausible memory-based modules that learn transformations from unsupervised visual experience. The main theorems show that these modules provide (for every object) a signature which is invariant to local affine transformations and approximately invariant for other transformations. I also prove that,
in a broad class of hierarchical architectures, signatures remain invariant from layer to layer. The identification of these memory-based modules with complex (and simple) cells in visual areas leads to a theory of invariant recognition for the ventral stream.

In the second part, I outline a theory about hierarchical architectures that can learn invariance to transformations. I show that the memory complexity of learning affine transformations is drastically reduced in a hierarchical architecture that factorizes transformations in terms of the subgroup of translations and the subgroups of rotations and scalings. I then show how translations are automatically selected as the only learnable transformations during development by enforcing small apertures – eg small receptive fields – in the first layer.

In a third part I show that the transformations represented in each area can be optimized in terms of storage and robustness, as a consequence determining the tuning of the neurons in the area, rather independently (under normal conditions) of the statistics of natural images. I describe a model of learning that can be proved to have this property, linking in an elegant way the spectral properties of the signatures with the tuning of receptive fields in different areas. A surprising implication of these theoretical results is that the computational goals and some of the tuning properties of cells in the ventral stream may follow from symmetry properties (in the sense of physics) of the visual world through a process of unsupervised correlational learning, based on Hebbian synapses. In particular, simple and complex cells do not directly care about oriented bars: their tuning is a side effect of their role in translation invariance. Across the whole ventral stream the preferred features reported for neurons in different areas are only a symptom of the invariances computed and represented.

The results of each of the three parts stand on their own independently of each other. Together this theory-in-fieri makes several broad predictions, some of which are:

-invariance to small transformations in early areas (eg translations in V1) may underly stability of visual perception (suggested by Stu Geman);

-each cell’s tuning properties are shaped by visual experience of image transformations during developmental and adult plasticity;

-simple cells are likely to be the same population as complex cells, arising from different convergence of the Hebbian learning rule. The input to complex “complex” cells are dendritic branches with simple cell properties;

-class-specific transformations are learned and represented at the top of the ventral stream hierarchy; thus class-specific modules such as faces, places and possibly body areas should exist in IT;

-the type of transformations that are learned from visual experience depend on the size of the receptive fields and thus on the area (layer in the models) – assuming that the size increases with layers;

-the mix of transformations learned in each area influences the tuning properties of the cells oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);

-features must be discriminative and invariant: invariance to transformations is the primary determinant of the tuning of cortical neurons rather than statistics of natural images.

The theory is broadly consistent with the current version of HMAX. It explains it and extend it in terms of unsupervised learning, a broader class of transformation invariance and higher level modules. The goal of this paper is to sketch a comprehensive theory with little regard for mathematical niceties. If the theory turns out to be useful there will be scope for deep mathematics, ranging from group representation tools to wavelet theory to dynamics of learning

    The Computational Magic of the Ventral Stream: Towards a Theory

    Get PDF
    I conjecture that the sample complexity of object recognition is mostly due to geometric image transformations and that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations. The most surprising implication of the theory emerging from these assumptions is that the computational goals and detailed properties of cells in the ventral stream follow from symmetry properties of the visual world through a process of unsupervised correlational learning.

From the assumption of a hierarchy of areas with receptive fields of increasing size the theory predicts that the size of the receptive fields determines which transformations are learned during development and then factored out during normal processing; that the transformation represented in each area determines the tuning of the neurons in the aerea, independently of the statistics of natural images; and that class-specific transformations are learned and represented at the top of the ventral stream hierarchy.

Some of the main predictions of this theory-in-fieri are:
1. the type of transformation that are learned from visual experience depend on the size (measured in terms of wavelength) and thus on the area (layer in the models) – assuming that the aperture size increases with layers;
2. the mix of transformations learned determine the properties of the receptive fields – oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);
3. invariance to small translations in V1 may underly stability of visual perception
4. class-specific modules – such as faces, places and possibly body areas – should exist in IT to process images of object classes
    corecore