121,077 research outputs found

    A complexity analysis of statistical learning algorithms

    Full text link
    We apply information-based complexity analysis to support vector machine (SVM) algorithms, with the goal of a comprehensive continuous algorithmic analysis of such algorithms. This involves complexity measures in which some higher order operations (e.g., certain optimizations) are considered primitive for the purposes of measuring complexity. We consider classes of information operators and algorithms made up of scaled families, and investigate the utility of scaling the complexities to minimize error. We look at the division of statistical learning into information and algorithmic components, at the complexities of each, and at applications to support vector machine (SVM) and more general machine learning algorithms. We give applications to SVM algorithms graded into linear and higher order components, and give an example in biomedical informatics

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner

    Bounded time computation on metric spaces and Banach spaces

    Full text link
    We extend the framework by Kawamura and Cook for investigating computational complexity for operators occurring in analysis. This model is based on second-order complexity theory for functions on the Baire space, which is lifted to metric spaces by means of representations. Time is measured in terms of the length of the input encodings and the required output precision. We propose the notions of a complete representation and of a regular representation. We show that complete representations ensure that any computable function has a time bound. Regular representations generalize Kawamura and Cook's more restrictive notion of a second-order representation, while still guaranteeing fast computability of the length of the encodings. Applying these notions, we investigate the relationship between purely metric properties of a metric space and the existence of a representation such that the metric is computable within bounded time. We show that a bound on the running time of the metric can be straightforwardly translated into size bounds of compact subsets of the metric space. Conversely, for compact spaces and for Banach spaces we construct a family of admissible, complete, regular representations that allow for fast computation of the metric and provide short encodings. Here it is necessary to trade the time bound off against the length of encodings

    Approximation Error Bounds via Rademacher's Complexity

    Get PDF
    Approximation properties of some connectionistic models, commonly used to construct approximation schemes for optimization problems with multivariable functions as admissible solutions, are investigated. Such models are made up of linear combinations of computational units with adjustable parameters. The relationship between model complexity (number of computational units) and approximation error is investigated using tools from Statistical Learning Theory, such as Talagrand's inequality, fat-shattering dimension, and Rademacher's complexity. For some families of multivariable functions, estimates of the approximation accuracy of models with certain computational units are derived in dependence of the Rademacher's complexities of the families. The estimates improve previously-available ones, which were expressed in terms of V C dimension and derived by exploiting union-bound techniques. The results are applied to approximation schemes with certain radial-basis-functions as computational units, for which it is shown that the estimates do not exhibit the curse of dimensionality with respect to the number of variables
    corecore