11,224 research outputs found

    A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization

    Get PDF
    We propose a probabilistic numerical algorithm to solve Backward Stochastic Differential Equations (BSDEs) with nonnegative jumps, a class of BSDEs introduced in [9] for representing fully nonlinear HJB equations. In particular, this allows us to numerically solve stochastic control problems with controlled volatility, possibly degenerate. Our backward scheme, based on least-squares regressions, takes advantage of high-dimensional properties of Monte-Carlo methods, and also provides a parametric estimate in feedback form for the optimal control. A partial analysis of the error of the scheme is provided, as well as numerical tests on the problem of superreplication of option with uncertain volatilities and/or correlations, including a detailed comparison with the numerical results from the alternative scheme proposed in [7]

    Asset Pricing under uncertainty

    Get PDF
    We study the effect of parameter uncertainty on a stochastic diffusion model, in particular the impact on the pricing of contingent claims, using methods from the theory of Dirichlet forms. We apply these techniques to hedging procedures in order to compute the sensitivity of SDE trajectories with respect to parameter perturbations. We show that this analysis can justify endogenously the presence of a bid-ask spread on the option prices. We also prove that if the stochastic differential equation admits a closed form representation then the sensitivities have closed form representations. We examine the case of log-normal diffusion and we show that this framework leads to a smiled implied volatility surface coherent with historical data.Comment: arXiv admin note: substantial text overlap with arXiv:1001.520

    Bivariate Normal Mixture Spread Option Valuation

    Get PDF
    This paper explores the properties of a European spread option valuation method for correlated assets when the marginal distribution each asset return is assumed to be a mixture of normal distributions. In this ‘bivariate normal mixture’ (BNM) approach no-arbitrage option values are just weighted sums of different 2GBM values based on two correlated lognormal diffusions, and likewise for their sensitivities. The main advantage of this approach is that BNM option values are consistent with the volatility smiles for each asset and an implied correlation ‘frown’, both of which are often observed when spread options are priced under the 2GBM assumptions. It is simple to perform an extensive consideration of model values for varying strike, and for different asset volatility and correlation structures. We compare BNM valuations with those based on the ‘2GBM’ assumption of two correlated lognormal diffusions and explain the differences between the BNM values and the 2GBM values of spread options as a weighted sum of six second order 2GBM value sensitivities. We also investigate the BNM sensitivities and these, like the option values, can sometimes be significantly different from those obtained under the 2GBM model. Finally, we show how the correlation frown that is implied by this model is affected as we change the parameters in the bivariate normal mixture density of the asset returns.spread option, implied correlation, bivariate normal mixture density

    Multistage Stochastic Portfolio Optimisation in Deregulated Electricity Markets Using Linear Decision Rules

    Get PDF
    The deregulation of electricity markets increases the financial risk faced by retailers who procure electric energy on the spot market to meet their customers’ electricity demand. To hedge against this exposure, retailers often hold a portfolio of electricity derivative contracts. In this paper, we propose a multistage stochastic mean-variance optimisation model for the management of such a portfolio. To reduce computational complexity, we perform two approximations: stage-aggregation and linear decision rules (LDR). The LDR approach consists of restricting the set of decision rules to those affine in the history of the random parameters. When applied to mean-variance optimisation models, it leads to convex quadratic programs. Since their size grows typically only polynomially with the number of periods, they can be efficiently solved. Our numerical experiments illustrate the value of adaptivity inherent in the LDR method and its potential for enabling scalability to problems with many periods.OR in energy, electricity portfolio management, stochastic programming, risk management, linear decision rules
    corecore