52,305 research outputs found

    Approximation algorithms for stochastic clustering

    Full text link
    We consider stochastic settings for clustering, and develop provably-good approximation algorithms for a number of these notions. These algorithms yield better approximation ratios compared to the usual deterministic clustering setting. Additionally, they offer a number of advantages including clustering which is fairer and has better long-term behavior for each user. In particular, they ensure that *every user* is guaranteed to get good service (on average). We also complement some of these with impossibility results

    Robust hierarchical k-center clustering

    Get PDF
    One of the most popular and widely used methods for data clustering is hierarchical clustering. This clustering technique has proved useful to reveal interesting structure in the data in several applications ranging from computational biology to computer vision. Robustness is an important feature of a clustering technique if we require the clustering to be stable against small perturbations in the input data. In most applications, getting a clustering output that is robust against adversarial outliers or stochastic noise is a necessary condition for the applicability and effectiveness of the clustering technique. This is even more critical in hierarchical clustering where a small change at the bottom of the hierarchy may propagate all the way through to the top. Despite all the previous work [2, 3, 6, 8], our theoretical understanding of robust hierarchical clustering is still limited and several hierarchical clustering algorithms are not known to satisfy such robustness properties. In this paper, we study the limits of robust hierarchical k-center clustering by introducing the concept of universal hierarchical clustering and provide (almost) tight lower and upper bounds for the robust hierarchical k-center clustering problem with outliers and variants of the stochastic clustering problem. Most importantly we present a constant-factor approximation for optimal hierarchical k-center with at most z outliers using a universal set of at most O(z2) set of outliers and show that this result is tight. Moreover we show the necessity of using a universal set of outliers in order to compute an approximately optimal hierarchical k-center with a diffierent set of outliers for each k

    Efficient Semidefinite Spectral Clustering via Lagrange Duality

    Full text link
    We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.Comment: 13 page
    • …
    corecore