23 research outputs found

    Approximation algorithms for low-distortion embeddings into low-dimensional spaces

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 33-35).We present several approximation algorithms for the problem of embedding metric spaces into a line, and into the two-dimensional plane. We give an O([square root] n)-approximation algorithm for the problem of finding a line embedding of a metric induced by a given unweighted graph, that minimizes the (standard) multiplicative distortion. For the same problem, we give an exact algorithm, with running-time exponential in the distortion. We complement these results by showing that the problem is NP-hard to [alpha]-approximate, for some constant [alpha] > 1. For the two-dimensional case, we show a O([square root] n) upper bound for the distortion required to embed an n-point subset of the two-dimensional sphere, into the plane. We prove that this bound is asymptotically tight, by exhibiting n-point subsets such that any embedding into the plane has distortion [omega]([square root] n). These techniques yield a O(1)-approximation algorithm for the problem of embedding an n-point subset of the sphere into the plane.by Anastasios Sidiropoulos.S.M

    Probabilistic embeddings of the Fr\'echet distance

    Full text link
    The Fr\'echet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Fr\'echet distance between two polygonal curves of complexity tt in Rd\mathbb{R}^d, where d∈{2,3,4,5}d\in\lbrace 2,3,4,5\rbrace, degrades by a factor linear in tt with constant probability. We show upper and lower bounds on the distortion. We also evaluate our findings empirically on a benchmark data set. The preliminary experimental results stand in stark contrast with our lower bounds. They indicate that highly distorted projections happen very rarely in practice, and only for strongly conditioned input curves. Keywords: Fr\'echet distance, metric embeddings, random projectionsComment: 27 pages, 11 figure

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem
    corecore