642,639 research outputs found
Time varying VARs with inequality restrictions
In many applications involving time-varying parameter VARs, it is desirable to restrict the VAR coe¢ cients at each point in time to be non-explosive. This is an example of a problem where inequality restrictions are imposed on states in a state space model. In this paper, we describe how existing MCMC algorithms for imposing such inequality restrictions can work poorly (or not at all) and suggest alternative algorithms which exhibit better performance. Furthermore, previous algorithms involve an approximation relating to a key integrating constant. Our algorithms are exact, not involving this approximation. In an application involving a commonly-used U.S. data set, we show how this approximation can be a poor one and present evidence that the algorithms proposed in this paper work well
Approximation Algorithms for Partially Colorable Graphs
Graph coloring problems are a central topic of study in the theory of algorithms. We study the problem of partially coloring partially colorable graphs. For alpha = alpha |V| such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might be a better notion to use than k-colorability, since data arising in practice often contains various forms of noise.
We give a polynomial time algorithm that takes as input a (1 - epsilon)-partially 3-colorable graph G and a constant gamma in [epsilon, 1/10], and colors a (1 - epsilon/gamma) fraction of the vertices using O~(n^{0.25 + O(gamma^{1/2})}) colors. We also study natural semi-random families of instances of partially 3-colorable graphs and partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family of instances
- …
