14 research outputs found

    Approximation Schemes for Maximum Weight Independent Set of Rectangles

    Full text link
    In the Maximum Weight Independent Set of Rectangles (MWISR) problem we are given a set of n axis-parallel rectangles in the 2D-plane, and the goal is to select a maximum weight subset of pairwise non-overlapping rectangles. Due to many applications, e.g. in data mining, map labeling and admission control, the problem has received a lot of attention by various research communities. We present the first (1+epsilon)-approximation algorithm for the MWISR problem with quasi-polynomial running time 2^{poly(log n/epsilon)}. In contrast, the best known polynomial time approximation algorithms for the problem achieve superconstant approximation ratios of O(log log n) (unweighted case) and O(log n / log log n) (weighted case). Key to our results is a new geometric dynamic program which recursively subdivides the plane into polygons of bounded complexity. We provide the technical tools that are needed to analyze its performance. In particular, we present a method of partitioning the plane into small and simple areas such that the rectangles of an optimal solution are intersected in a very controlled manner. Together with a novel application of the weighted planar graph separator theorem due to Arora et al. this allows us to upper bound our approximation ratio by (1+epsilon). Our dynamic program is very general and we believe that it will be useful for other settings. In particular, we show that, when parametrized properly, it provides a polynomial time (1+epsilon)-approximation for the special case of the MWISR problem when each rectangle is relatively large in at least one dimension. Key to this analysis is a method to tile the plane in order to approximately describe the topology of these rectangles in an optimal solution. This technique might be a useful insight to design better polynomial time approximation algorithms or even a PTAS for the MWISR problem

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    QPTAS for Weighted Geometric Set Cover on Pseudodisks and Halfspaces

    Get PDF
    International audienceWeighted geometric set-cover problems arise naturally in several geometric and non-geometric settings (e.g. the breakthrough of Bansal and Pruhs (FOCS 2010) reduces a wide class of machine scheduling problems to weighted geometric set-cover). More than two decades of research has succeeded in settling the (1 + status for most geometric set-cover problems, except for some basic scenarios which are still lacking. One is that of weighted disks in the plane for which, after a series of papers, Varadarajan (STOC 2010) presented a clever quasi-sampling technique, which together with improvements by Chan et al. (SODA 2012), yielded an O(1)-approximation algorithm. Even for the unweighted case, a PTAS for a fundamental class of objects called pseudodisks (which includes half-spaces, disks, unit-height rectangles, translates of convex sets etc.) is currently unknown. Another fundamental case is weighted halfspaces in R 3 , for which a PTAS is currently lacking. In this paper, we present a QPTAS for all of these remaining problems. Our results are based on the separator framework of Adamaszek and Wiese (FOCS 2013, SODA 2014), who recently obtained a QPTAS for weighted independent set of polygonal regions. This rules out the possibility that these problems are APX-hard, assuming NP DTIME(2 polylog(n)). Together with the recent work of Chan and Grant (CGTA 2014), this settles the APX-hardness status for all natural geometric set-cover problems
    corecore