20,816 research outputs found

    Connectivity measures for internet topologies.

    Get PDF
    The topology of the Internet has initially been modelled as an undirected graph, where vertices correspond to so-called Autonomous Systems (ASs),and edges correspond to physical links between pairs of ASs. However, in order to capture the impact of routing policies, it has recently become apparent that one needs to classify the edges according to the existing economic relationships (customer-provider, peer-to-peer or siblings) between the ASs. This leads to a directed graph model in which traffic can be sent only along so-called valley-free paths. Four different algorithms have been proposed in the literature for inferring AS relationships using publicly available data from routing tables. We investigate the differences in the graph models produced by these algorithms, focussing on connectivity measures. To this aim, we compute the maximum number of vertex-disjoint valley-free paths between ASs as well as the size of a minimum cut separating a pair of ASs. Although these problems are solvable in polynomial time for ordinary graphs, they are NP-hard in our setting. We formulate the two problems as integer programs, and we propose a number of exact algorithms for solving them. For the problem of finding the maximum number of vertex-disjoint paths, we discuss two algorithms; the first one is a branch-and-price algorithm based on the IP formulation, and the second algorithm is a non LP based branch-and-bound algorithm. For the problem of finding minimum cuts we use a branch-and-cut algo rithm, based on the IP formulation of this problem. Using these algorithms, we obtain exact solutions for both problems in reasonable time. It turns out that there is a large gap in terms of the connectivity measures between the undirected and directed models. This finding supports our conclusion that economic relationships need to be taken into account when building a topology of the Internet.Research; Internet;

    Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design

    Full text link
    We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results

    General Bounds for Incremental Maximization

    Full text link
    We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k∈Nk\in\mathbb{N} that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all kk between the incremental solution after kk steps and an optimum solution of cardinality kk. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.6182.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.182.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.581.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (bb-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.3132.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.Comment: fixed typo

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost
    • …
    corecore