2,375 research outputs found

    Approximating the Permanent of a Random Matrix with Vanishing Mean

    Full text link
    We show an algorithm for computing the permanent of a random matrix with vanishing mean in quasi-polynomial time. Among special cases are the Gaussian, and biased-Bernoulli random matrices with mean 1/lnln(n)^{1/8}. In addition, we can compute the permanent of a random matrix with mean 1/poly(ln(n)) in time 2^{O(n^{\eps})} for any small constant \eps>0. Our algorithm counters the intuition that the permanent is hard because of the "sign problem" - namely the interference between entries of a matrix with different signs. A major open question then remains whether one can provide an efficient algorithm for random matrices of mean 1/poly(n), whose conjectured #P-hardness is one of the baseline assumptions of the BosonSampling paradigm

    Deterministic Annealing and Nonlinear Assignment

    Full text link
    For combinatorial optimization problems that can be formulated as Ising or Potts spin systems, the Mean Field (MF) approximation yields a versatile and simple ANN heuristic, Deterministic Annealing. For assignment problems the situation is more complex -- the natural analog of the MF approximation lacks the simplicity present in the Potts and Ising cases. In this article the difficulties associated with this issue are investigated, and the options for solving them discussed. Improvements to existing Potts-based MF-inspired heuristics are suggested, and the possibilities for defining a proper variational approach are scrutinized.Comment: 15 pages, 3 figure

    A Simple FPTAS for Counting Edge Covers

    Full text link
    An edge cover of a graph is a set of edges such that every vertex has at least an adjacent edge in it. Previously, approximation algorithm for counting edge covers is only known for 3 regular graphs and it is randomized. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of edge covers for any graph. Our main technique is correlation decay, which is a powerful tool to design FPTAS for counting problems. In order to get FPTAS for general graphs without degree bound, we make use of a stronger notion called computationally efficient correlation decay, which is introduced in [Li, Lu, Yin SODA 2012].Comment: To appear in SODA 201

    Correlation Effects in Orbital Magnetism

    Full text link
    Orbital magnetization is known empirically to play an important role in several magnetic phenomena, such as permanent magnetism and ferromagnetic superconductivity. Within the recently developed ''modern theory of orbital magnetization'', theoretical insight has been gained into the nature of this often neglected contribution to magnetism, but is based on an underlying mean-field approximation. From this theory, a few treatments have emerged which also take into account correlations beyond the mean-field approximation. Here, we apply the scheme developed in a previous work [Phys. Rev. B 93{\bf \text{93}}, 161104(R) (2016)] to the Haldane-Hubbard model to investigate the effect of charge fluctuations on the orbital magnetization within the GWGW approximation. Qualitatively, we are led to distinguish between two quite different situations: (i) When the lattice potential is larger than the nearest neighbor hopping, the correlations are found to boost the orbital magnetization. (ii) If the nearest neighbor hopping is instead larger than the lattice potential, the correlations reduce the magnetization.Comment: 8 pages, 9 figure

    Quantum scattering in the strip: from ballistic to localized regimes

    Full text link
    Quantum scattering is studied in a system consisting of randomly distributed point scatterers in the strip. The model is continuous yet exactly solvable. Varying the number of scatterers (the sample length) we investigate a transition between the ballistic and the localized regimes. By considering the cylinder geometry and introducing the magnetic flux we are able to study time reversal symmetry breaking in the system. Both macroscopic (conductance) and microscopic (eigenphases distribution, statistics of S-matrix elements) characteristics of the system are examined.Comment: 17 pages and 10 figures (15 eps files); accepted for publication in EPJ

    Statistical Theory of Parity Nonconservation in Compound Nuclei

    Get PDF
    We present the first application of statistical spectroscopy to study the root-mean-square value of the parity nonconserving (PNC) interaction matrix element M determined experimentally by scattering longitudinally polarized neutrons from compound nuclei. Our effective PNC interaction consists of a standard two-body meson-exchange piece and a doorway term to account for spin-flip excitations. Strength functions are calculated using realistic single-particle energies and a residual strong interaction adjusted to fit the experimental density of states for the targets, ^{238} U for A\sim 230 and ^{104,105,106,108} Pd for A\sim 100. Using the standard Desplanques, Donoghue, and Holstein estimates of the weak PNC meson-nucleon coupling constants, we find that M is about a factor of 3 smaller than the experimental value for ^{238} U and about a factor of 1.7 smaller for Pd. The significance of this result for refining the empirical determination of the weak coupling constants is discussed.Comment: Latex file, no Fig
    corecore