365 research outputs found

    What can quantum optics say about computational complexity theory?

    Get PDF
    Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in BPP^NP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.Comment: 5 pages, 1 figur

    Computing the permanent of (some) complex matrices

    Full text link
    We present a deterministic algorithm, which, for any given 0< epsilon < 1 and an nxn real or complex matrix A=(a_{ij}) such that | a_{ij}-1| < 0.19 for all i, j computes the permanent of A within relative error epsilon in n^{O(ln n -ln epsilon)} time. The method can be extended to computing hafnians and multidimensional permanents.Comment: 12 pages, results extended to hafnians and multidimensional permanents, minor improvement

    Approximating the Permanent with Fractional Belief Propagation

    Get PDF
    We discuss schemes for exact and approximate computations of permanents, and compare them with each other. Specifically, we analyze the Belief Propagation (BP) approach and its Fractional Belief Propagation (FBP) generalization for computing the permanent of a non-negative matrix. Known bounds and conjectures are verified in experiments, and some new theoretical relations, bounds and conjectures are proposed. The Fractional Free Energy (FFE) functional is parameterized by a scalar parameter γ∈[−1;1]\gamma\in[-1;1], where γ=−1\gamma=-1 corresponds to the BP limit and γ=1\gamma=1 corresponds to the exclusion principle (but ignoring perfect matching constraints) Mean-Field (MF) limit. FFE shows monotonicity and continuity with respect to γ\gamma. For every non-negative matrix, we define its special value γ∗∈[−1;0]\gamma_*\in[-1;0] to be the γ\gamma for which the minimum of the γ\gamma-parameterized FFE functional is equal to the permanent of the matrix, where the lower and upper bounds of the γ\gamma-interval corresponds to respective bounds for the permanent. Our experimental analysis suggests that the distribution of γ∗\gamma_* varies for different ensembles but γ∗\gamma_* always lies within the [−1;−1/2][-1;-1/2] interval. Moreover, for all ensembles considered the behavior of γ∗\gamma_* is highly distinctive, offering an emprirical practical guidance for estimating permanents of non-negative matrices via the FFE approach.Comment: 42 pages, 14 figure

    Approximating the Permanent of a Random Matrix with Vanishing Mean

    Full text link
    We show an algorithm for computing the permanent of a random matrix with vanishing mean in quasi-polynomial time. Among special cases are the Gaussian, and biased-Bernoulli random matrices with mean 1/lnln(n)^{1/8}. In addition, we can compute the permanent of a random matrix with mean 1/poly(ln(n)) in time 2^{O(n^{\eps})} for any small constant \eps>0. Our algorithm counters the intuition that the permanent is hard because of the "sign problem" - namely the interference between entries of a matrix with different signs. A major open question then remains whether one can provide an efficient algorithm for random matrices of mean 1/poly(n), whose conjectured #P-hardness is one of the baseline assumptions of the BosonSampling paradigm

    A quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices

    Full text link
    We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices, by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithms development.Comment: 9 pages, 1 figure. Updated version for publicatio

    Matrix permanent and quantum entanglement of permutation invariant states

    Full text link
    We point out that a geometric measure of quantum entanglement is related to the matrix permanent when restricted to permutation invariant states. This connection allows us to interpret the permanent as an angle between vectors. By employing a recently introduced permanent inequality by Carlen, Loss and Lieb, we can prove explicit formulas of the geometric measure for permutation invariant basis states in a simple way.Comment: 10 page
    • …
    corecore