2 research outputs found

    Approximating Source Location and Star Survivable Network Problems

    Full text link
    In Source Location (SL) problems the goal is to select a mini-mum cost source set SVS \subseteq V such that the connectivity (or flow) ψ(S,v)\psi(S,v) from SS to any node vv is at least the demand dvd_v of vv. In many SL problems ψ(S,v)=dv\psi(S,v)=d_v if vSv \in S, namely, the demand of nodes selected to SS is completely satisfied. In a node-connectivity variant suggested recently by Fukunaga, every node vv gets a "bonus" pvdvp_v \leq d_v if it is selected to SS. Fukunaga showed that for undirected graphs one can achieve ratio O(klnk)O(k \ln k) for his variant, where k=maxvVdvk=\max_{v \in V}d_v is the maximum demand. We improve this by achieving ratio \min\{p^*\lnk,k\}\cdot O(\ln (k/q^*)) for a more general version with node capacities, where p=maxvVpvp^*=\max_{v \in V} p_v is the maximum bonus and q=minvVqvq^*=\min_{v \in V} q_v is the minimum capacity. In particular, for the most natural case p=1p^*=1 considered by Fukunaga, we improve the ratio from O(klnk)O(k \ln k) to O(ln2k)O(\ln^2k). We also get ratio O(k)O(k) for the edge-connectivity version, for which no ratio that depends on kk only was known before. To derive these results, we consider a particular case of the Survivable Network (SN) problem when all edges of positive cost form a star. We give ratio O(min{lnn,ln2k})O(\min\{\ln n,\ln^2 k\}) for this variant, improving over the best ratio known for the general case O(k3lnn)O(k^3 \ln n) of Chuzhoy and Khanna

    Approximating Source Location and Star Survivable Network Problems

    Full text link
    Abstract. In Source Location (SL) problems the goal is to select a minimum cost source set S ⊆ V such that the connectivity (or flow) ψ(S, v) from S to any node v is at least the demand dv of v. In many SL problems ψ(S, v) = dv if v ∈ S, namely, the demand of nodes se-lected to S is completely satisfied. In a node-connectivity variant sug-gested recently by Fukunaga [6], every node v gets a “bonus ” pv ≤ dv if it is selected to S, namely, ψ(S, v) = pv + κ(S \ {v}, v) if v ∈ S and ψ(S, v) = κ(S, v) otherwise, where κ(S, v) is the maximum number of internally disjoint (S, v)-paths. While the approximability of many SL problems was seemingly settled to Θ(ln d(V)) in [18], Fukunaga [6] showed that for undirected graphs one can achieve ratio O(k ln k) for his variant, where k = maxv∈V dv is the maximum demand. We improve this by achieving ratio min{p ∗ ln k, k} · O(ln(k/q∗)) for a more general version with node capacities, where p ∗ = maxv∈V pv is the maximum bonus and q ∗ = minv∈V qv is the minimum capacity. In particular, for the most natural case p ∗ = 1 considered in [6] we improve the ratio from O(k ln k) to O(ln2 k). Our result also implies ratio k for the edge-connectivity version. To derive these results, we consider a particular case of the Survivable Network (SN) problem when all edges of positive cost form a star. We give ratio O(min{lnn, ln2 k}) for this variant, improving over the best ratio known for the general case O(k3 lnn) of Chuzhoy and Khanna [3]. In addition, we show that directed SL with unit costs is Ω(logn)-hard to approximate even for 0, 1 demands, while SL with uniform demands can be solved in polynomial time. Finally, we consider a generalization of SL where we also have edge-costs {ce: e ∈ E} and flow-cost bounds {bv: v ∈ V}, and require that for every node v, the minimum cost of a flow of value dv from S to v is at most bv. We show that this problem admits approximation ratio O(ln d(V) + ln(nc(E) − b(V)).
    corecore