217 research outputs found

    Learning relevant eye movement feature spaces across users

    No full text
    In this paper we predict the relevance of images based on a lowdimensional feature space found using several users’ eye movements. Each user is given an image-based search task, during which their eye movements are extracted using a Tobii eye tracker. The users also provide us with explicit feedback regarding the relevance of images. We demonstrate that by using a greedy Nystrom algorithm on the eye movement features of different users, we can find a suitable low-dimensional feature space for learning. We validate the suitability of this feature space by projecting the eye movement features of a new user into this space, training an online learning algorithm using these features, and showing that the number of mistakes (regret over time) made in predicting relevant images is lower than when using the original eye movement features. We also plot Recall-Precision and ROC curves, and use a sign test to verify the statistical significance of our results

    Less is More: Nystr\"om Computational Regularization

    Get PDF
    We study Nystr\"om type subsampling approaches to large scale kernel methods, and prove learning bounds in the statistical learning setting, where random sampling and high probability estimates are considered. In particular, we prove that these approaches can achieve optimal learning bounds, provided the subsampling level is suitably chosen. These results suggest a simple incremental variant of Nystr\"om Kernel Regularized Least Squares, where the subsampling level implements a form of computational regularization, in the sense that it controls at the same time regularization and computations. Extensive experimental analysis shows that the considered approach achieves state of the art performances on benchmark large scale datasets.Comment: updated version of NIPS 2015 (oral

    Matrix Coherence and the Nystrom Method

    Full text link
    The Nystrom method is an efficient technique to speed up large-scale learning applications by generating low-rank approximations. Crucial to the performance of this technique is the assumption that a matrix can be well approximated by working exclusively with a subset of its columns. In this work we relate this assumption to the concept of matrix coherence and connect matrix coherence to the performance of the Nystrom method. Making use of related work in the compressed sensing and the matrix completion literature, we derive novel coherence-based bounds for the Nystrom method in the low-rank setting. We then present empirical results that corroborate these theoretical bounds. Finally, we present more general empirical results for the full-rank setting that convincingly demonstrate the ability of matrix coherence to measure the degree to which information can be extracted from a subset of columns
    corecore