47 research outputs found

    Promise and Pitfalls of Extending Google's PageRank Algorithm to Citation Networks

    Full text link
    We review our recent work on applying the Google PageRank algorithm to find scientific "gems" among all Physical Review publications, and its extension to CiteRank, to find currently popular research directions. These metrics provide a meaningful extension to traditionally-used importance measures, such as the number of citations and journal impact factor. We also point out some pitfalls of over-relying on quantitative metrics to evaluate scientific quality.Comment: 3 pages, 1 figure, invited comment for the Journal of Neuroscience. The arxiv version is microscopically different from the published versio

    Rich-club and page-club coefficients for directed graphs

    Full text link
    Rich-club and page-club coefficients and their null models are introduced for directed graphs. Null models allow for a quantitative discussion of the rich-club and page-club phenomena. These coefficients are computed for four directed real-world networks: Arxiv High Energy Physics paper citation network, Web network (released from Google), Citation network among US Patents, and Email network from a EU research institution. The results show a high correlation between rich-club and page-club ordering. For journal paper citation network, we identify both rich-club and page-club ordering, showing that {}"elite" papers are cited by other {}"elite" papers. Google web network shows partial rich-club and page-club ordering up to some point and then a narrow declining of the corresponding normalized coefficients, indicating the lack of rich-club ordering and the lack of page-club ordering, i.e. high in-degree (PageRank) pages purposely avoid sharing links with other high in-degree (PageRank) pages. For UC patents citation network, we identify page-club and rich-club ordering providing a conclusion that {}"elite" patents are cited by other {}"elite" patents. Finally, for e-mail communication network we show lack of both rich-club and page-club ordering. We construct an example of synthetic network showing page-club ordering and the lack of rich-club ordering.Comment: 18 pages, 6 figure

    Determining factors behind the PageRank log-log plot

    Get PDF
    We study the relation between PageRank and other parameters of information networks such as in-degree, out-degree, and the fraction of dangling nodes. We model this relation through a stochastic equation inspired by the original definition of PageRank. Further, we use the theory of regular variation to prove that PageRank and in-degree follow power laws with the same exponent. The difference between these two power laws is in a multiple coefficient, which depends mainly on the fraction of dangling nodes, average in-degree, the power law exponent, and damping factor. The out-degree distribution has a minor effect, which we explicitly quantify. Our theoretical predictions show a good agreement with experimental data on three different samples of the Web

    Network-based ranking in social systems: three challenges

    Get PDF
    Ranking algorithms are pervasive in our increasingly digitized societies, with important real-world applications including recommender systems, search engines, and influencer marketing practices. From a network science perspective, network-based ranking algorithms solve fundamental problems related to the identification of vital nodes for the stability and dynamics of a complex system. Despite the ubiquitous and successful applications of these algorithms, we argue that our understanding of their performance and their applications to real-world problems face three fundamental challenges: (i) Rankings might be biased by various factors; (2) their effectiveness might be limited to specific problems; and (3) agents' decisions driven by rankings might result in potentially vicious feedback mechanisms and unhealthy systemic consequences. Methods rooted in network science and agent-based modeling can help us to understand and overcome these challenges.Comment: Perspective article. 9 pages, 3 figure

    Tackling information asymmetry in networks: a new entropy-based ranking index

    Full text link
    Information is a valuable asset for agents in socio-economic systems, a significant part of the information being entailed into the very network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant systemic properties (e.g. the risk of financial contagion in a network of liabilities), agents capable of providing a better estimate of (otherwise) unaccessible network properties, ultimately have a competitive advantage. In this paper, we address for the first time the issue of quantifying the information asymmetry arising from the network topology. To this aim, we define a novel index - InfoRank - intended to measure the quality of the information possessed by each node, computing the Shannon entropy of the ensemble conditioned on the node-specific information. Further, we test the performance of our novel ranking procedure in terms of the reconstruction accuracy of the (unaccessible) network structure and show that it outperforms other popular centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.Comment: 12 pages, 8 figure

    Two types of well followed users in the followership networks of Twitter

    Get PDF
    In the Twitter blogosphere, the number of followers is probably the most basic and succinct quantity for measuring popularity of users. However, the number of followers can be manipulated in various ways; we can even buy follows. Therefore, alternative popularity measures for Twitter users on the basis of, for example, users' tweets and retweets, have been developed. In the present work, we take a purely network approach to this fundamental question. First, we find that two relatively distinct types of users possessing a large number of followers exist, in particular for Japanese, Russian, and Korean users among the seven language groups that we examined. A first type of user follows a small number of other users. A second type of user follows approximately the same number of other users as the number of follows that the user receives. Then, we compare local (i.e., egocentric) followership networks around the two types of users with many followers. We show that the second type, which is presumably uninfluential users despite its large number of followers, is characterized by high link reciprocity, a large number of friends (i.e., those whom a user follows) for the followers, followers' high link reciprocity, large clustering coefficient, large fraction of the second type of users among the followers, and a small PageRank. Our network-based results support that the number of followers used alone is a misleading measure of user's popularity. We propose that the number of friends, which is simple to measure, also helps us to assess the popularity of Twitter users.Comment: 4 Figures and 8 Table
    corecore