139 research outputs found

    Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    Full text link
    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ\Pi\Sigma\Pi polynomial. We first prove that the first problem is \#P-hard and then devise a O∗(3ns(n))O^*(3^ns(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n)s(n). Later, this upper bound is improved to O∗(2n)O^*(2^n) for ΠΣΠ\Pi\Sigma\Pi polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ\Pi\Sigma polynomials. On the negative side, we prove that, even for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degree ≤2\le 2, the first problem cannot be approximated at all for any approximation factor ≥1\ge 1, nor {\em "weakly approximated"} in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ\lambda-approximation algorithm for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degrees no more a constant λ≥2\lambda \ge 2. On the inapproximability side, we give a n(1−ϵ)/2n^{(1-\epsilon)/2} lower bound, for any ϵ>0,\epsilon >0, on the approximation factor for ΠΣΠ\Pi\Sigma\Pi polynomials. When terms in these polynomials are constrained to degrees ≤2\le 2, we prove a 1.04761.0476 lower bound, assuming P≠NPP\not=NP; and a higher 1.06041.0604 lower bound, assuming the Unique Games Conjecture

    Monomial Testing and Applications

    Full text link
    In this paper, we devise two algorithms for the problem of testing qq-monomials of degree kk in any multivariate polynomial represented by a circuit, regardless of the primality of qq. One is an O∗(2k)O^*(2^k) time randomized algorithm. The other is an O∗(12.8k)O^*(12.8^k) time deterministic algorithm for the same qq-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several applications of qq-monomial testing are also given, including a deterministic O∗(12.8mk)O^*(12.8^{mk}) upper bound for the mm-set kk-packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note: substantial text overlap with arXiv:1302.5898; and text overlap with arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author

    Faster Deterministic Algorithms for Packing, Matching and tt-Dominating Set Problems

    Full text link
    In this paper, we devise three deterministic algorithms for solving the mm-set kk-packing, mm-dimensional kk-matching, and tt-dominating set problems in time O∗(5.44mk)O^*(5.44^{mk}), O∗(5.44(m−1)k)O^*(5.44^{(m-1)k}) and O∗(5.44t)O^*(5.44^{t}), respectively. Although recently there has been remarkable progress on randomized solutions to those problems, our bounds make good improvements on the best known bounds for deterministic solutions to those problems.Comment: ISAAC13 Submission. arXiv admin note: substantial text overlap with arXiv:1303.047

    The Complexity of Testing Monomials in Multivariate Polynomials

    Full text link
    The work in this paper is to initiate a theory of testing monomials in multivariate polynomials. The central question is to ask whether a polynomial represented by certain economically compact structure has a multilinear monomial in its sum-product expansion. The complexity aspects of this problem and its variants are investigated with two folds of objectives. One is to understand how this problem relates to critical problems in complexity, and if so to what extent. The other is to exploit possibilities of applying algebraic properties of polynomials to the study of those problems. A series of results about ΠΣΠ\Pi\Sigma\Pi and ΠΣ\Pi\Sigma polynomials are obtained in this paper, laying a basis for further study along this line

    Lower Bounds for Monotone Counting Circuits

    Full text link
    A {+,x}-circuit counts a given multivariate polynomial f, if its values on 0-1 inputs are the same as those of f; on other inputs the circuit may output arbitrary values. Such a circuit counts the number of monomials of f evaluated to 1 by a given 0-1 input vector (with multiplicities given by their coefficients). A circuit decides ff if it has the same 0-1 roots as f. We first show that some multilinear polynomials can be exponentially easier to count than to compute them, and can be exponentially easier to decide than to count them. Then we give general lower bounds on the size of counting circuits.Comment: 20 page

    Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations

    Get PDF
    In this paper we study multivariate polynomial functions in complex variables and the corresponding associated symmetric tensor representations. The focus is on finding conditions under which such complex polynomials/tensors always take real values. We introduce the notion of symmetric conjugate forms and general conjugate forms, and present characteristic conditions for such complex polynomials to be real-valued. As applications of our results, we discuss the relation between nonnegative polynomials and sums of squares in the context of complex polynomials. Moreover, new notions of eigenvalues/eigenvectors for complex tensors are introduced, extending properties from the Hermitian matrices. Finally, we discuss an important property for symmetric tensors, which states that the largest absolute value of eigenvalue of a symmetric real tensor is equal to its largest singular value; the result is known as Banach's theorem. We show that a similar result holds in the complex case as well

    Integration and Optimization of Multivariate Polynomials by Restriction onto a Random Subspace

    Full text link
    We consider the problem of efficient integration of an n-variate polynomial with respect to the Gaussian measure in R^n and related problems of complex integration and optimization of a polynomial on the unit sphere. We identify a class of n-variate polynomials f for which the integral of any positive integer power f^p over the whole space is well-approximated by a properly scaled integral over a random subspace of dimension O(log n). Consequently, the maximum of f on the unit sphere is well-approximated by a properly scaled maximum on the unit sphere in a random subspace of dimension O(log n). We discuss connections with problems of combinatorial counting and applications to efficient approximation of a hafnian of a positive matrix.Comment: 15 page
    • …
    corecore