7 research outputs found

    An Algorithmic Framework for Computing Validation Performance Bounds by Using Suboptimal Models

    Full text link
    Practical model building processes are often time-consuming because many different models must be trained and validated. In this paper, we introduce a novel algorithm that can be used for computing the lower and the upper bounds of model validation errors without actually training the model itself. A key idea behind our algorithm is using a side information available from a suboptimal model. If a reasonably good suboptimal model is available, our algorithm can compute lower and upper bounds of many useful quantities for making inferences on the unknown target model. We demonstrate the advantage of our algorithm in the context of model selection for regularized learning problems

    An Equivalence between the Lasso and Support Vector Machines

    Get PDF
    We investigate the relation of two fundamental tools in machine learning and signal processing, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are equivalent, in the following sense. Given any instance of an L2-loss soft-margin (or hard-margin) SVM, we construct a Lasso instance having the same optimal solutions, and vice versa. As a consequence, many existing optimization algorithms for both SVMs and Lasso can also be applied to the respective other problem instances. Also, the equivalence allows for many known theoretical insights for SVM and Lasso to be translated between the two settings. One such implication gives a simple kernelized version of the Lasso, analogous to the kernels used in the SVM setting. Another consequence is that the sparsity of a Lasso solution is equal to the number of support vectors for the corresponding SVM instance, and that one can use screening rules to prune the set of support vectors. Furthermore, we can relate sublinear time algorithms for the two problems, and give a new such algorithm variant for the Lasso. We also study the regularization paths for both methods
    corecore