4 research outputs found

    Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few Queries

    Full text link
    The stochastic matching problem deals with finding a maximum matching in a graph whose edges are unknown but can be accessed via queries. This is a special case of stochastic kk-set packing, where the problem is to find a maximum packing of sets, each of which exists with some probability. In this paper, we provide edge and set query algorithms for these two problems, respectively, that provably achieve some fraction of the omniscient optimal solution. Our main theoretical result for the stochastic matching (i.e., 22-set packing) problem is the design of an \emph{adaptive} algorithm that queries only a constant number of edges per vertex and achieves a (1−ϵ)(1-\epsilon) fraction of the omniscient optimal solution, for an arbitrarily small ϵ>0\epsilon>0. Moreover, this adaptive algorithm performs the queries in only a constant number of rounds. We complement this result with a \emph{non-adaptive} (i.e., one round of queries) algorithm that achieves a (0.5−ϵ)(0.5 - \epsilon) fraction of the omniscient optimum. We also extend both our results to stochastic kk-set packing by designing an adaptive algorithm that achieves a (2k−ϵ)(\frac{2}{k} - \epsilon) fraction of the omniscient optimal solution, again with only O(1)O(1) queries per element. This guarantee is close to the best known polynomial-time approximation ratio of 3k+1−ϵ\frac{3}{k+1} -\epsilon for the \emph{deterministic} kk-set packing problem [Furer and Yu, 2013] We empirically explore the application of (adaptations of) these algorithms to the kidney exchange problem, where patients with end-stage renal failure swap willing but incompatible donors. We show on both generated data and on real data from the first 169 match runs of the UNOS nationwide kidney exchange that even a very small number of non-adaptive edge queries per vertex results in large gains in expected successful matches

    On local search and LP and SDP relaxations for k-Set Packing

    Get PDF
    Set packing is a fundamental problem that generalises some well-known combinatorial optimization problems and knows a lot of applications. It is equivalent to hypergraph matching and it is strongly related to the maximum independent set problem. In this thesis we study the k-set packing problem where given a universe U and a collection C of subsets over U, each of cardinality k, one needs to find the maximum collection of mutually disjoint subsets. Local search techniques have proved to be successful in the search for approximation algorithms, both for the unweighted and the weighted version of the problem where every subset in C is associated with a weight and the objective is to maximise the sum of the weights. We make a survey of these approaches and give some background and intuition behind them. In particular, we simplify the algebraic proof of the main lemma for the currently best weighted approximation algorithm of Berman ([Ber00]) into a proof that reveals more intuition on what is really happening behind the math. The main result is a new bound of k/3 + 1 + epsilon on the integrality gap for a polynomially sized LP relaxation for k-set packing by Chan and Lau ([CL10]) and the natural SDP relaxation [NOTE: see page iii]. We provide detailed proofs of lemmas needed to prove this new bound and treat some background on related topics like semidefinite programming and the Lovasz Theta function. Finally we have an extended discussion in which we suggest some possibilities for future research. We discuss how the current results from the weighted approximation algorithms and the LP and SDP relaxations might be improved, the strong relation between set packing and the independent set problem and the difference between the weighted and the unweighted version of the problem.Comment: There is a mistake in the following line of Theorem 17: "As an induced subgraph of H with more edges than vertices constitutes an improving set". Therefore, the proofs of Theorem 17, and hence Theorems 19, 23 and 24, are false. It is still open whether these theorems are tru
    corecore