10 research outputs found

    Geometric spanners with small chromatic number

    Get PDF
    AbstractGiven an integer k⩾2, we consider the problem of computing the smallest real number t(k) such that for each set P of points in the plane, there exists a t(k)-spanner for P that has chromatic number at most k. We prove that t(2)=3, t(3)=2, t(4)=2, and give upper and lower bounds on t(k) for k>4. We also show that for any ϵ>0, there exists a (1+ϵ)t(k)-spanner for P that has O(|P|) edges and chromatic number at most k. Finally, we consider an on-line variant of the problem where the points of P are given one after another, and the color of a point must be assigned at the moment the point is given. In this setting, we prove that t(2)=3, t(3)=1+3, t(4)=1+2, and give upper and lower bounds on t(k) for k>4

    The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition

    Get PDF
    A spanner graph on a set of points in RdR^d contains a shortest path between any pair of points with length at most a constant factor of their Euclidean distance. In this paper we investigate new models and aim to interpret why good spanners 'emerge' in reality, when they are clearly built in pieces by agents with their own interests and the construction is not coordinated. Our main result is to show that if edges are built in an arbitrary order but an edge is built if and only if its endpoints are not 'close' to the endpoints of an existing edge, the graph is a (1 + \eps)-spanner with a linear number of edges, constant average degree, and the total edge length as a small logarithmic factor of the cost of the minimum spanning tree. As a side product, we show a simple greedy algorithm for constructing optimal size well-separated pair decompositions that may be of interest on its own

    Fast Construction of Nets in Low Dimensional Metrics, and Their Applications

    Full text link
    We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This data-structure is then applied to obtain improved algorithms for the following problems: Approximate nearest neighbor search, well-separated pair decomposition, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near-linear and the space being used is linear.Comment: 41 pages. Extensive clean-up of minor English error

    Optimal Euclidean spanners: really short, thin and lanky

    Full text link
    In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners that achieves constant degree, diameter O(logn)O(\log n), and weight O(log2n)ω(MST)O(\log^2 n) \cdot \omega(MST), and has running time O(nlogn)O(n \cdot \log n). This construction applies to nn-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(logn)ω(MST)O(\log n) \cdot \omega(MST). Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4, 201

    Balancing Degree, Diameter and Weight in Euclidean Spanners

    Full text link
    In this paper we devise a novel \emph{unified} construction of Euclidean spanners that trades between the maximum degree, diameter and weight gracefully. For a positive integer k, our construction provides a (1+eps)-spanner with maximum degree O(k), diameter O(log_k n + alpha(k)), weight O(k \cdot log_k n \cdot log n) \cdot w(MST(S)), and O(n) edges. Note that for k= n^{1/alpha(n)} this gives rise to diameter O(alpha(n)), weight O(n^{1/alpha(n)} \cdot log n \cdot alpha(n)) \cdot w(MST(S)) and maximum degree O(n^{1/alpha(n)}), which improves upon a classical result of Arya et al. \cite{ADMSS95}; in the corresponding result from \cite{ADMSS95} the spanner has the same number of edges and diameter, but its weight and degree may be arbitrarily large. Also, for k = O(1) this gives rise to maximum degree O(1), diameter O(log n) and weight O(log^2 n) \cdot w(MST(S)), which reproves another classical result of Arya et al. \cite{ADMSS95}. Our bound of O(log_k n + alpha(k)) on the diameter is optimal under the constraints that the maximum degree is O(k) and the number of edges is O(n). Our bound on the weight is optimal up to a factor of log n. Our construction also provides a similar tradeoff in the complementary range of parameters, i.e., when the weight should be smaller than log^2 n, but the diameter is allowed to grow beyond log n. For random point sets in the d-dimensional unit cube, we "shave" a factor of log n from the weight bound. Specifically, in this case our construction achieves maximum degree O(k), diameter O(log_k n + alpha(k)) and weight that is with high probability O(k \cdot log_k n) \cdot w(MST(S)). Finally, en route to these results we devise optimal constructions of 1-spanners for general tree metrics, which are of independent interest.Comment: 27 pages, 7 figures; a preliminary version of this paper appeared in ESA'1

    Approximate Distance Oracles for Geometric Graphs

    No full text
    Given a geometric t-spanner graph G in E d with n points and m edges, with edge lengths that lie within a polynomial (in n) factor of each other. Then, after O(m+n log n) preprocessing, we present an approximation scheme to answer (1+")- approximate shortest path queries in O(1) time. The data structure uses O(n log n) space

    Approximate Distance Oracles for Geometric Graphs Joachim

    No full text
    corecore