8 research outputs found

    Joint Service Placement and Request Routing in Multi-cell Mobile Edge Computing Networks

    Full text link
    The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers.Comment: IEEE Infocom 201

    OKpi: All-KPI Network Slicing Through Efficient Resource Allocation

    Full text link
    Networks can now process data as well as transporting it; it follows that they can support multiple services, each requiring different key performance indicators (KPIs). Because of the former, it is critical to efficiently allocate network and computing resources to provide the required services, and, because of the latter, such decisions must jointly consider all KPIs targeted by a service. Accounting for newly introduced KPIs (e.g., availability and reliability) requires tailored models and solution strategies, and has been conspicuously neglected by existing works, which are instead built around traditional metrics like throughput and latency. We fill this gap by presenting a novel methodology and resource allocation scheme, named OKpi, which enables high-quality selection of radio points of access as well as VNF (Virtual Network Function) placement and data routing, with polynomial computational complexity. OKpi accounts for all relevant KPIs required by each service, and for any available resource from the fog to the cloud. We prove several important properties of OKpi and evaluate its performance in two real-world scenarios, finding it to closely match the optimum
    corecore