439 research outputs found

    Approximately bisimilar symbolic models for nonlinear control systems

    Full text link
    Control systems are usually modeled by differential equations describing how physical phenomena can be influenced by certain control parameters or inputs. Although these models are very powerful when dealing with physical phenomena, they are less suitable to describe software and hardware interfacing the physical world. For this reason there is a growing interest in describing control systems through symbolic models that are abstract descriptions of the continuous dynamics, where each "symbol" corresponds to an "aggregate" of states in the continuous model. Since these symbolic models are of the same nature of the models used in computer science to describe software and hardware, they provide a unified language to study problems of control in which software and hardware interact with the physical world. Furthermore the use of symbolic models enables one to leverage techniques from supervisory control and algorithms from game theory for controller synthesis purposes. In this paper we show that every incrementally globally asymptotically stable nonlinear control system is approximately equivalent (bisimilar) to a symbolic model. The approximation error is a design parameter in the construction of the symbolic model and can be rendered as small as desired. Furthermore if the state space of the control system is bounded the obtained symbolic model is finite. For digital control systems, and under the stronger assumption of incremental input-to-state stability, symbolic models can be constructed through a suitable quantization of the inputs.Comment: Corrected typo

    Low-Complexity Quantized Switching Controllers using Approximate Bisimulation

    Full text link
    In this paper, we consider the problem of synthesizing low-complexity controllers for incrementally stable switched systems. For that purpose, we establish a new approximation result for the computation of symbolic models that are approximately bisimilar to a given switched system. The main advantage over existing results is that it allows us to design naturally quantized switching controllers for safety or reachability specifications; these can be pre-computed offline and therefore the online execution time is reduced. Then, we present a technique to reduce the memory needed to store the control law by borrowing ideas from algebraic decision diagrams for compact function representation and by exploiting the non-determinism of the synthesized controllers. We show the merits of our approach by applying it to a simple model of temperature regulation in a building

    Symbolic models for nonlinear control systems without stability assumptions

    Full text link
    Finite-state models of control systems were proposed by several researchers as a convenient mechanism to synthesize controllers enforcing complex specifications. Most techniques for the construction of such symbolic models have two main drawbacks: either they can only be applied to restrictive classes of systems, or they require the exact computation of reachable sets. In this paper, we propose a new abstraction technique that is applicable to any smooth control system as long as we are only interested in its behavior in a compact set. Moreover, the exact computation of reachable sets is not required. The effectiveness of the proposed results is illustrated by synthesizing a controller to steer a vehicle.Comment: 11 pages, 2 figures, journa

    A Control-Oriented Notion of Finite State Approximation

    Full text link
    We consider the problem of approximating discrete-time plants with finite-valued sensors and actu- ators by deterministic finite memory systems for the purpose of certified-by-design controller synthesis. Building on ideas from robust control, we propose a control-oriented notion of finite state approximation for these systems, demonstrate its relevance to the control synthesis problem, and discuss its key features.Comment: IEEE Transactions on Automatic Control, to appea
    • …
    corecore