116 research outputs found

    Three-Way Joins on MapReduce: An Experimental Study

    Full text link
    We study three-way joins on MapReduce. Joins are very useful in a multitude of applications from data integration and traversing social networks, to mining graphs and automata-based constructions. However, joins are expensive, even for moderate data sets; we need efficient algorithms to perform distributed computation of joins using clusters of many machines. MapReduce has become an increasingly popular distributed computing system and programming paradigm. We consider a state-of-the-art MapReduce multi-way join algorithm by Afrati and Ullman and show when it is appropriate for use on very large data sets. By providing a detailed experimental study, we demonstrate that this algorithm scales much better than what is suggested by the original paper. However, if the join result needs to be summarized or aggregated, as opposed to being only enumerated, then the aggregation step can be integrated into a cascade of two-way joins, making it more efficient than the other algorithm, and thus becomes the preferred solution.Comment: 6 page

    Optimal-Location-Selection Query Processing in Spatial Databases

    Get PDF
    Abstract—This paper introduces and solves a novel type of spatial queries, namely, Optimal-Location-Selection (OLS) search, which has many applications in real life. Given a data object set DA, a target object set DB, a spatial region R, and a critical distance dc in a multidimensional space, an OLS query retrieves those target objects in DB that are outside R but have maximal optimality. Here, the optimality of a target object b 2 DB located outside R is defined as the number of the data objects from DA that are inside R and meanwhile have their distances to b not exceeding dc. When there is a tie, the accumulated distance from the data objects to b serves as the tie breaker, and the one with smaller distance has the better optimality. In this paper, we present the optimality metric, formalize the OLS query, and propose several algorithms for processing OLS queries efficiently. A comprehensive experimental evaluation has been conducted using both real and synthetic data sets to demonstrate the efficiency and effectiveness of the proposed algorithms. Index Terms—Query processing, optimal-location-selection, spatial database, algorithm. Ç

    Constraint-Based Processing of Multiway Spatial Joins

    Full text link

    Multi-Dimensional Joins

    Get PDF
    We present three novel algorithms for performing multi-dimensional joins and an in-depth survey and analysis of a low-dimensional spatial join. The first algorithm, the Iterative Spatial Join, performs a spatial join on low-dimensional data and is based on a plane-sweep technique. As we show analytically and experimentally, the Iterative Spatial Join performs well when internal memory is limited, compared to competing methods. This suggests that the Iterative Spatial Join would be useful for very large data sets or in situations where internal memory is a shared resource and is therefore limited, such as with today's database engines which share internal memory amongst several queries. Furthermore, the performance of the Iterative Spatial Join is predictable and has no parameters which need to be tuned, unlike other algorithms. The second algorithm, the Quickjoin algorithm, performs a higher-dimensional similarity join in which pairs of objects that lie within a certain distance epsilon of each other are reported. The Quickjoin algorithm overcomes drawbacks of competing methods, such as requiring embedding methods on the data first or using multi-dimensional indices, which limit the ability to discriminate between objects in each dimension, thereby degrading performance. A formal analysis is provided of the Quickjoin method, and experiments show that the Quickjoin method significantly outperforms competing methods. The third algorithm adapts incremental join techniques to improve the speed of calculating the Hausdorff distance, which is used in applications such as image matching, image analysis, and surface approximations. The nearest neighbor incremental join technique for indices that are based on hierarchical containment use a priority queue of index node pairs and bounds on the distance values between pairs, both of which need to modified in order to calculate the Hausdorff distance. Results of experiments are described that confirm the performance improvement. Finally, a survey is provided which instead of just summarizing the literature and presenting each technique in its entirety, describes distinct components of the different techniques, and each technique is decomposed into an overall framework for performing a spatial join

    A Unified Approach for Indexed and Non-Indexed Spatial Joins

    Get PDF
    The original publication is available at www.springerlink.comL. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vitter. “A Unified Approach for Indexed and Non-Indexed Spatial Joins,” Proceedings of the 7th International Conference on Extending Database Technology (EDBT ’00), Konstanz, Germany, March 2000, published in Lecture Notes in Computer Science, Springer, 1777, Berlin, Germany, 413–429
    • …
    corecore