446 research outputs found

    Sparse Message Passing Based Preamble Estimation for Crowded M2M Communications

    Full text link
    Due to the massive number of devices in the M2M communication era, new challenges have been brought to the existing random-access (RA) mechanism, such as severe preamble collisions and resource block (RB) wastes. To address these problems, a novel sparse message passing (SMP) algorithm is proposed, based on a factor graph on which Bernoulli messages are updated. The SMP enables an accurate estimation on the activity of the devices and the identity of the preamble chosen by each active device. Aided by the estimation, the RB efficiency for the uplink data transmission can be improved, especially among the collided devices. In addition, an analytical tool is derived to analyze the iterative evolution and convergence of the SMP algorithm. Finally, numerical simulations are provided to verify the validity of our analytical results and the significant improvement of the proposed SMP on estimation error rate even when preamble collision occurs.Comment: submitted to ICC 2018 with 6 pages and 4 figure

    Matrix Factorization Based Blind Bayesian Receiver for Grant-Free Random Access in mmWave MIMO mMTC

    Full text link
    Grant-free random access is promising for massive connectivity with sporadic transmissions in massive machine type communications (mMTC), where the hand-shaking between the access point (AP) and users is skipped, leading to high access efficiency. In grant-free random access, the AP needs to identify the active users and perform channel estimation and signal detection. Conventionally, pilot signals are required for the AP to achieve user activity detection and channel estimation before active user signal detection, which may still result in substantial overhead and latency. In this paper, to further reduce the overhead and latency, we explore the problem of grant-free random access without the use of pilot signals in a millimeter wave (mmWave) multiple input and multiple output (MIMO) system, where the AP performs blind joint user activity detection, channel estimation and signal detection (UACESD). We show that the blind joint UACESD can be formulated as a constrained composite matrix factorization problem, which can be solved by exploiting the structures of the channel matrix and signal matrix. Leveraging our recently developed unitary approximate message passing based matrix factorization (UAMP-MF) algorithm, we design a message passing based Bayesian algorithm to solve the blind joint UACESD problem. Extensive simulation results demonstrate the effectiveness of the blind grant-free random access scheme

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    Compressive Sensing-Based Grant-Free Massive Access for 6G Massive Communication

    Full text link
    The advent of the sixth-generation (6G) of wireless communications has given rise to the necessity to connect vast quantities of heterogeneous wireless devices, which requires advanced system capabilities far beyond existing network architectures. In particular, such massive communication has been recognized as a prime driver that can empower the 6G vision of future ubiquitous connectivity, supporting Internet of Human-Machine-Things for which massive access is critical. This paper surveys the most recent advances toward massive access in both academic and industry communities, focusing primarily on the promising compressive sensing-based grant-free massive access paradigm. We first specify the limitations of existing random access schemes and reveal that the practical implementation of massive communication relies on a dramatically different random access paradigm from the current ones mainly designed for human-centric communications. Then, a compressive sensing-based grant-free massive access roadmap is presented, where the evolutions from single-antenna to large-scale antenna array-based base stations, from single-station to cooperative massive multiple-input multiple-output systems, and from unsourced to sourced random access scenarios are detailed. Finally, we discuss the key challenges and open issues to shed light on the potential future research directions of grant-free massive access.Comment: Accepted by IEEE IoT Journa

    Message Passing in C-RAN: Joint User Activity and Signal Detection

    Full text link
    In cloud radio access network (C-RAN), remote radio heads (RRHs) and users are uniformly distributed in a large area such that the channel matrix can be considered as sparse. Based on this phenomenon, RRHs only need to detect the relatively strong signals from nearby users and ignore the weak signals from far users, which is helpful to develop low-complexity detection algorithms without causing much performance loss. However, before detection, RRHs require to obtain the realtime user activity information by the dynamic grant procedure, which causes the enormous latency. To address this issue, in this paper, we consider a grant-free C-RAN system and propose a low-complexity Bernoulli-Gaussian message passing (BGMP) algorithm based on the sparsified channel, which jointly detects the user activity and signal. Since active users are assumed to transmit Gaussian signals at any time, the user activity can be regarded as a Bernoulli variable and the signals from all users obey a Bernoulli-Gaussian distribution. In the BGMP, the detection functions for signals are designed with respect to the Bernoulli-Gaussian variable. Numerical results demonstrate the robustness and effectivity of the BGMP. That is, for different sparsified channels, the BGMP can approach the mean-square error (MSE) of the genie-aided sparse minimum mean-square error (GA-SMMSE) which exactly knows the user activity information. Meanwhile, the fast convergence and strong recovery capability for user activity of the BGMP are also verified.Comment: Conference, 6 pages, 7 figures, accepted by IEEE Globecom 201
    • …
    corecore