8 research outputs found

    Approximate Ergodic Capacity of a Class of Fading Two-User Two-Hop Networks

    Get PDF
    The fading AWGN two-user two-hop network is considered where the channel coefficients are independent and identically distributed (i.i.d.) according to a continuous distribution and vary over time. For a broad class of channel distributions, the ergodic sum capacity is characterized to within a constant number of bits/second/hertz, independent of the signal-to-noise ratio. The achievability follows from the analysis of an interference neutralization scheme where the relays are partitioned into M pairs, and interference is neutralized separately by each pair of relays. When M = 1, the proposed ergodic interference neutralization characterizes the ergodic sum capacity to within 4 bits/sec/Hz for i.i.d. uniform phase fading and approximately 4.7 bits/sec/Hz for i.i.d. Rayleigh fading. It is further shown that this gap can be tightened to 4 log pi-4 bits/sec/Hz (approximately 2.6) for i.i.d. uniform phase fading and 4-4 log(3 pi/8) bits/sec/Hz (approximately 3.1) for i.i.d. Rayleigh fading in the limit of large M.(1

    Approximate Ergodic Capacity of a Class of Fading Two-User Two-Hop Networks

    Full text link

    Degrees of Freedom of Full-Duplex Multiantenna Cellular Networks

    Full text link
    We study the degrees of freedom (DoF) of cellular networks in which a full duplex (FD) base station (BS) equipped with multiple transmit and receive antennas communicates with multiple mobile users. We consider two different scenarios. In the first scenario, we study the case when half duplex (HD) users, partitioned to either the uplink (UL) set or the downlink (DL) set, simultaneously communicate with the FD BS. In the second scenario, we study the case when FD users simultaneously communicate UL and DL data with the FD BS. Unlike conventional HD only systems, inter-user interference (within the cell) may severely limit the DoF, and must be carefully taken into account. With the goal of providing theoretical guidelines for designing such FD systems, we completely characterize the sum DoF of each of the two different FD cellular networks by developing an achievable scheme and obtaining a matching upper bound. The key idea of the proposed scheme is to carefully allocate UL and DL information streams using interference alignment and beamforming techniques. By comparing the DoFs of the considered FD systems with those of the conventional HD systems, we establish the DoF gain by enabling FD operation in various configurations. As a consequence of the result, we show that the DoF can approach the two-fold gain over the HD systems when the number of users becomes large enough as compared to the number of antennas at the BS.Comment: 21 pages, 16 figures, a shorter version of this paper has been submitted to the IEEE International Symposium on Information Theory (ISIT) 201

    Degrees of Freedom of Uplink-Downlink Multiantenna Cellular Networks

    Full text link
    An uplink-downlink two-cell cellular network is studied in which the first base station (BS) with M1M_1 antennas receives independent messages from its N1N_1 serving users, while the second BS with M2M_2 antennas transmits independent messages to its N2N_2 serving users. That is, the first and second cells operate as uplink and downlink, respectively. Each user is assumed to have a single antenna. Under this uplink-downlink setting, the sum degrees of freedom (DoF) is completely characterized as the minimum of (N1N2+min(M1,N1)(N1N2)++min(M2,N2)(N2N1)+)/max(N1,N2)(N_1N_2+\min(M_1,N_1)(N_1-N_2)^++\min(M_2,N_2)(N_2-N_1)^+)/\max(N_1,N_2), M1+N2,M2+N1M_1+N_2,M_2+N_1, max(M1,M2)\max(M_1,M_2), and max(N1,N2)\max(N_1,N_2), where a+a^+ denotes max(0,a)\max(0,a). The result demonstrates that, for a broad class of network configurations, operating one of the two cells as uplink and the other cell as downlink can strictly improve the sum DoF compared to the conventional uplink or downlink operation, in which both cells operate as either uplink or downlink. The DoF gain from such uplink-downlink operation is further shown to be achievable for heterogeneous cellular networks having hotspots and with delayed channel state information.Comment: 22 pages, 11 figures, in revision for IEEE Transactions on Information Theor

    Function Computation over Networks:Efficient Information Processing for Cache and Sensor Applications

    Get PDF
    This thesis looks at efficient information processing for two network applications: content delivery with caching and collecting summary statistics in wireless sensor networks. Both applications are studied under the same paradigm: function computation over networks, where distributed source nodes cooperatively communicate some functions of individual observations to one or multiple destinations. One approach that always works is to convey all observations and then let the destinations compute the desired functions by themselves. However, if the available communication resources are limited, then revealing less unwanted information becomes critical. Centered on this goal, this thesis develops new coding schemes using information-theoretic tools. The first part of this thesis focuses on content delivery with caching. Caching is a technique that facilitates reallocation of communication resources in order to avoid network congestion during peak-traffic times. An information-theoretic model, termed sequential coding for computing, is proposed to analyze the potential gains offered by the caching technique. For the single-user case, the proposed framework succeeds in verifying the optimality of some simple caching strategies and in providing guidance towards optimal caching strategies. For the two-user case, five representative subproblems are considered, which draw connections with classic source coding problems including the Gray-Wyner system, successive refinement, and the Kaspi/Heegard-Berger problem. Afterwards, the problem of distributed computing with successive refinement is considered. It is shown that if full data recovery is required in the second stage of successive refinement, then any information acquired in the first stage will be useful later in the second stage. The second part of this thesis looks at the collection of summary statistics in wireless sensor networks. Summary statistics include arithmetic mean, median, standard deviation, etc, and they belong to the class of symmetric functions. This thesis develops arithmetic computation coding in order to efficiently perform in-network computation for weighted arithmetic sums and symmetric functions. The developed arithmetic computation coding increases the achievable computation rate from Θ((logL)/L)\Theta((\log L)/L) to Θ(1/logL)\Theta(1/\log L), where LL is the number of sensors. Finally, this thesis demonstrates that interaction among sensors is beneficial for computation of type-threshold functions, e.g., the maximum and the indicator function, and that a non-vanishing computation rate is achievable

    Information Theoretic Limits for Wireless Information Transfer Between Finite Spatial Regions

    No full text
    Since the first multiple-input multiple-output (MIMO) experiments performed at Bell Laboratories in the late 1990’s, it was clear that wireless communication systems can achieve improved performances using multiple antennas simultaneously during transmission and reception. Theoretically, the capacity of MIMO systems scales linearly with the number of antennas in favorable propagation conditions. However, the capacity is significantly reduced when the antennas are collocated. A generalized paradigm for MIMO systems, spatially distributed MIMO systems, is proposed as a solution. Spatially distributed MIMO systems transmit information from a spatial region to another with each region occupying a large number of antennas. Hence, for a given constraint on the size of the spatial regions, evaluating the information theoretic performance limits for information transfer between regions has been a central topic of research in wireless communications. This thesis addresses this problem from a theoretical point of view. Our approach is to utilize the modal decomposition of the classical wave equation to represent the spatially distributed MIMO systems. This modal analysis is particularly useful as it advocates a shift of the “large wireless networks” research agenda from seeking “universal” performance limits to seeking a multi-parameter family of performance limits, where the key parameters, space, time and frequency are interrelated. However, traditional performance bounds on spatially distributed MIMO systems fail to depict the interrelation among space, time and frequency. Several outcomes resulting from this thesis are: i) estimation of an upper bound to degrees of freedom of broadband signals observed over finite spatial and temporal windows, ii) derivation of the amount of information that can be captured by a finite spatial region over a finite bandwidth, iii) a new framework to illustrate the relationship between Shannon’s capacity and the spatial channels, iv) a tractable model to determine the information capacity between spatial regions for narrowband transmissions. Hence, our proposed approach provides a generalized theoretical framework to characterize realistic MIMO and spatially distributed MIMO systems at different frequency bands in both narrowband and broadband conditions
    corecore