5,575 research outputs found

    Approximate Counting via Correlation Decay on Planar Graphs

    Full text link
    We show for a broad class of counting problems, correlation decay (strong spatial mixing) implies FPTAS on planar graphs. The framework for the counting problems considered by us is the Holant problems with arbitrary constant-size domain and symmetric constraint functions. We define a notion of regularity on the constraint functions, which covers a wide range of natural and important counting problems, including all multi-state spin systems, counting graph homomorphisms, counting weighted matchings or perfect matchings, the subgraphs world problem transformed from the ferromagnetic Ising model, and all counting CSPs and Holant problems with symmetric constraint functions of constant arity. The core of our algorithm is a fixed-parameter tractable algorithm which computes the exact values of the Holant problems with regular constraint functions on graphs of bounded treewidth. By utilizing the locally tree-like property of apex-minor-free families of graphs, the parameterized exact algorithm implies an FPTAS for the Holant problem on these graph families whenever the Gibbs measure defined by the problem exhibits strong spatial mixing. We further extend the recursive coupling technique to Holant problems and establish strong spatial mixing for the ferromagnetic Potts model and the subgraphs world problem. As consequences, we have new deterministic approximation algorithms on planar graphs and all apex-minor-free graphs for several counting problems

    A Simple FPTAS for Counting Edge Covers

    Full text link
    An edge cover of a graph is a set of edges such that every vertex has at least an adjacent edge in it. Previously, approximation algorithm for counting edge covers is only known for 3 regular graphs and it is randomized. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of edge covers for any graph. Our main technique is correlation decay, which is a powerful tool to design FPTAS for counting problems. In order to get FPTAS for general graphs without degree bound, we make use of a stronger notion called computationally efficient correlation decay, which is introduced in [Li, Lu, Yin SODA 2012].Comment: To appear in SODA 201

    FPTAS for Weighted Fibonacci Gates and Its Applications

    Full text link
    Fibonacci gate problems have severed as computation primitives to solve other problems by holographic algorithm and play an important role in the dichotomy of exact counting for Holant and CSP frameworks. We generalize them to weighted cases and allow each vertex function to have different parameters, which is a much boarder family and #P-hard for exactly counting. We design a fully polynomial-time approximation scheme (FPTAS) for this generalization by correlation decay technique. This is the first deterministic FPTAS for approximate counting in the general Holant framework without a degree bound. We also formally introduce holographic reduction in the study of approximate counting and these weighted Fibonacci gate problems serve as computation primitives for approximate counting. Under holographic reduction, we obtain FPTAS for other Holant problems and spin problems. One important application is developing an FPTAS for a large range of ferromagnetic two-state spin systems. This is the first deterministic FPTAS in the ferromagnetic range for two-state spin systems without a degree bound. Besides these algorithms, we also develop several new tools and techniques to establish the correlation decay property, which are applicable in other problems

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating logZ(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error ϵn\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/ϵ1/\epsilon, and we also provide a lower bound quadratic in 1/ϵ1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/ϵ1/\epsilon and the lower bound is quadratic in 1/ϵ1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    FPTAS for Counting Monotone CNF

    Full text link
    A monotone CNF formula is a Boolean formula in conjunctive normal form where each variable appears positively. We design a deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of satisfying assignments for a given monotone CNF formula when each variable appears in at most 55 clauses. Equivalently, this is also an FPTAS for counting set covers where each set contains at most 55 elements. If we allow variables to appear in a maximum of 66 clauses (or sets to contain 66 elements), it is NP-hard to approximate it. Thus, this gives a complete understanding of the approximability of counting for monotone CNF formulas. It is also an important step towards a complete characterization of the approximability for all bounded degree Boolean #CSP problems. In addition, we study the hypergraph matching problem, which arises naturally towards a complete classification of bounded degree Boolean #CSP problems, and show an FPTAS for counting 3D matchings of hypergraphs with maximum degree 44. Our main technique is correlation decay, a powerful tool to design deterministic FPTAS for counting problems defined by local constraints among a number of variables. All previous uses of this design technique fall into two categories: each constraint involves at most two variables, such as independent set, coloring, and spin systems in general; or each variable appears in at most two constraints, such as matching, edge cover, and holant problem in general. The CNF problems studied here have more complicated structures than these problems and require new design and proof techniques. As it turns out, the technique we developed for the CNF problem also works for the hypergraph matching problem. We believe that it may also find applications in other CSP or more general counting problems.Comment: 24 pages, 2 figures. version 1=>2: minor edits, highlighted the picture of set cover/packing, and an implication of our previous result in 3D matchin

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if pCp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio

    Approximate Capacities of Two-Dimensional Codes by Spatial Mixing

    Full text link
    We apply several state-of-the-art techniques developed in recent advances of counting algorithms and statistical physics to study the spatial mixing property of the two-dimensional codes arising from local hard (independent set) constraints, including: hard-square, hard-hexagon, read/write isolated memory (RWIM), and non-attacking kings (NAK). For these constraints, the strong spatial mixing would imply the existence of polynomial-time approximation scheme (PTAS) for computing the capacity. It was previously known for the hard-square constraint the existence of strong spatial mixing and PTAS. We show the existence of strong spatial mixing for hard-hexagon and RWIM constraints by establishing the strong spatial mixing along self-avoiding walks, and consequently we give PTAS for computing the capacities of these codes. We also show that for the NAK constraint, the strong spatial mixing does not hold along self-avoiding walks
    corecore