390 research outputs found

    Gaussian Multiple Access via Compute-and-Forward

    Full text link
    Lattice codes used under the Compute-and-Forward paradigm suggest an alternative strategy for the standard Gaussian multiple-access channel (MAC): The receiver successively decodes integer linear combinations of the messages until it can invert and recover all messages. In this paper, a multiple-access technique called CFMA (Compute-Forward Multiple Access) is proposed and analyzed. For the two-user MAC, it is shown that without time-sharing, the entire capacity region can be attained using CFMA with a single-user decoder as soon as the signal-to-noise ratios are above 1+21+\sqrt{2}. A partial analysis is given for more than two users. Lastly the strategy is extended to the so-called dirty MAC where two interfering signals are known non-causally to the two transmitters in a distributed fashion. Our scheme extends the previously known results and gives new achievable rate regions.Comment: to appear in IEEE Transactions on Information Theor

    Lattice strategies for the dirty multiple access channel

    Get PDF
    A generalization of the Gaussian dirty-paper problem to a multiple access setup is considered. There are two additive interference signals, one known to each transmitter but none to the receiver. The rates achievable using Costa’s strategies (i.e. by a random binning scheme induced by Costa’s auxiliary random variables) vanish in the limit when the interference signals are strong. In contrast, it is shown that lattice strategies (“lattice precoding”) can achieve positive rates independent of the interferences, and in fact in some cases- which depend on the noise variance and power constraints- they are optimal. In particular, lattice strategies are optimal in the limit of high SNR. It is also shown that the gap between the achievable rate region and the capacity region is at most 0.167 bit. Thus, the dirty MAC is another instance of a network setup, like the Korner-Marton modulo-two sum problem, where linear coding is potentially better than random binning. Lattice transmission schemes and conditions for optimality for the asymmetric case, where there is only one interference which is known to one of the users (who serves as a “helper ” to the other user), and for the “common interference ” case are also derived. In the former case the gap between the helper achievable rate and its capacity is at most 0.085 bit

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Lattice Codes for Many-to-One Interference Channels With and Without Cognitive Messages

    Full text link
    A new achievable rate region is given for the Gaussian cognitive many-to-one interference channel. The proposed novel coding scheme is based on the compute-and-forward approach with lattice codes. Using the idea of decoding sums of codewords, our scheme improves considerably upon the conventional coding schemes which treat interference as noise or decode messages simultaneously. Our strategy also extends directly to the usual many-to-one interference channels without cognitive messages. Comparing to the usual compute-and-forward scheme where a fixed lattice is used for the code construction, the novel scheme employs scaled lattices and also encompasses key ingredients of the existing schemes for the cognitive interference channel. With this new component, our scheme achieves a larger rate region in general. For some symmetric channel settings, new constant gap or capacity results are established, which are independent of the number of users in the system.Comment: To appear in IEEE Transactions on Information Theor
    • …
    corecore