2,264 research outputs found

    Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel

    Full text link
    In this paper, we study the impact of different channel output feedback architectures on the capacity of the two-user interference channel. For a two-user interference channel, a feedback link can exist between receivers and transmitters in 9 canonical architectures (see Fig. 2), ranging from only one feedback link to four feedback links. We derive the exact capacity region for the symmetric deterministic interference channel and the constant-gap capacity region for the symmetric Gaussian interference channel for all of the 9 architectures. We show that for a linear deterministic symmetric interference channel, in the weak interference regime, all models of feedback, except the one, which has only one of the receivers feeding back to its own transmitter, have the identical capacity region. When only one of the receivers feeds back to its own transmitter, the capacity region is a strict subset of the capacity region of the rest of the feedback models in the weak interference regime. However, the sum-capacity of all feedback models is identical in the weak interference regime. Moreover, in the strong interference regime all models of feedback with at least one of the receivers feeding back to its own transmitter have the identical sum-capacity. For the Gaussian interference channel, the results of the linear deterministic model follow, where capacity is replaced with approximate capacity.Comment: submitted to IEEE Transactions on Information Theory, results improved by deriving capacity region of all 9 canonical feedback models in two-user interference channe

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure

    Enabling the Multi-User Generalized Degrees of Freedom in the Gaussian Cellular Channel

    Full text link
    There has been major progress over the last decade in understanding the classical interference channel (IC). Recent key results show that constant bit gap capacity results can be obtained from linear deterministic models (LDMs). However, it is widely unrecognized that the time-invariant, frequency-flat cellular channel, which contains the IC as a special case, possesses some additional generalized degrees of freedom (GDoF) due to multi-user operation. This was proved for the LDM cellular channel very recently but is an open question for the corresponding Gaussian counterpart. In this paper, we close this gap and provide an achievable sum-rate for the Gaussian cellular channel which is within a constant bit gap of the LDM sum capacity. We show that the additional GDoFs from the LDM cellular channel carry over. This is enabled by signal scale alignment. In particular, the multi-user gain reduces the interference by half in the 2-user per cell case compared to the IC.Comment: 5 pages, to appear in IEEE ITW 2014, Hobart, Australi

    Interference Mitigation Through Limited Receiver Cooperation

    Full text link
    Interference is a major issue limiting the performance in wireless networks. Cooperation among receivers can help mitigate interference by forming distributed MIMO systems. The rate at which receivers cooperate, however, is limited in most scenarios. How much interference can one bit of receiver cooperation mitigate? In this paper, we study the two-user Gaussian interference channel with conferencing decoders to answer this question in a simple setting. We identify two regions regarding the gain from receiver cooperation: linear and saturation regions. In the linear region receiver cooperation is efficient and provides a degrees-of-freedom gain, which is either one cooperation bit buys one more bit or two cooperation bits buy one more bit until saturation. In the saturation region receiver cooperation is inefficient and provides a power gain, which is at most a constant regardless of the rate at which receivers cooperate. The conclusion is drawn from the characterization of capacity region to within two bits. The proposed strategy consists of two parts: (1) the transmission scheme, where superposition encoding with a simple power split is employed, and (2) the cooperative protocol, where one receiver quantize-bin-and-forwards its received signal, and the other after receiving the side information decode-bin-and-forwards its received signal.Comment: Submitted to IEEE Transactions on Information Theory. 69 pages, 14 figure

    Feedback through Overhearing

    Full text link
    In this paper we examine the value of feedback that comes from overhearing, without dedicated feedback resources. We focus on a simple model for this purpose: a deterministic two-hop interference channel, where feedback comes from overhearing the forward-links. A new aspect brought by this setup is the dual-role of the relay signal. While the relay signal needs to convey the source message to its corresponding destination, it can also provide a feedback signal which can potentially increase the capacity of the first hop. We derive inner and outer bounds on the sum capacity which match for a large range of the parameter values. Our results identify the parameter ranges where overhearing can provide non-negative capacity gain and can even achieve the performance with dedicated-feedback resources. The results also provide insights into which transmissions are most useful to overhear

    Performance Limits of Microwave and Dual Microwave/Millimeter Wave Band Networks

    Get PDF
    Traditionally, wireless networks communicate over the conventional microwave band (sub-6 GHz) as it supports reliable communication over a large geographic area. The ever increasing demand for bandwidth to support the rising number of consumers and services, however, is fast depleting the available microwave spectrum. As such, complementing the microwave spectrum with additional bandwidth from the millimeter-wave (mm-wave) band has been envisioned as a promising solution to this problem. Since transmissions in the mm-wave band are typically achieved with highly directional steerable antenna arrays to counter the severe path-loss in mm-wave frequencies, the resulting mm-wave links are typically rendered highly directional, which can often be modeled as directional point-to-point links. However, mm-wave transmissions are inherently unreliable compared to those in the microwave band. Hence, communicating simultaneously over both bands in an integrated mm-wave/microwave dual-band setup is emerging as a promising new technology. In this dual-band setting, high-rate data traffic can be carried by relatively unreliable high-bandwidth mm-wave links, while control signals and moderate-bandwidth traffic can be communicated over the relatively reliable microwave band. In this thesis, we first study two dual-band multi-user networks that model two important aspects of wireless communication: inter-user interference and relay-cooperation. The broad goal of this study is to characterize information-theoretical performance limits of such networks, which can then be used to obtain insights on the optimal encoding/decoding strategy, effective resource allocation schemes, etc. In the first part of this thesis, we study a two-transmitter two-receiver dual-band Gaussian interference channel (IC) operating over an integrated mm-wave/microwave dual-band. This channel models a setting where a pair of single-transmitter single-receiver links communicate simultaneously, and thus mutually interfere. Here, transmissions in the underlying microwave band are modeled as a two-user conventional Gaussian IC (GIC). In contrast, a transmitter in the mm-wave band is assumed to be capable of communicating to either the desired destination or the interfered destination via a point-to-point direct-link or a cross-link, respectively. The dual-band IC is first classified into 3 classes according to the interference level in the underlying microwave GIC, and then sufficient channel conditions are obtained under which the capacity region of the 3 classes are characterized. For cases in which the sufficient conditions do not necessarily hold, approximate capacity results are obtained that characterizes the capacity region to within 1/2 bit per channel use per user. The performance of the dual-band IC is likely to be impacted significantly by the point-to-point nature and large bandwidth of the mm-wave links, and specifically by whether the mm-wave spectrum is used as direct-links or cross-links. Transmitting in either the direct-links only or the cross-links only is not optimal for all channel conditions, and there exists a non-trivial trade-off between the two modes. To understand the impact of this trade-off on the performance of the dual-band IC, we study the power allocation scheme over the mm-wave direct and cross-links that maximizes the sum-rate of the channel. The resulting power allocation strategy is characterized in closed form, which possesses rich properties and reveals useful insights into the trade-offs in such networks. In the second part of this thesis, we study a fading Gaussian multiple-access relay channel (MARC) over an integrated mm-wave/microwave dual-band, where two sources communicate to a destination with the help of a relay. In the dual-band MARC, transmission in the underlying microwave band is modeled as a conventional Gaussian MARC. However, similar to that in the dual-band IC, a mm-wave transmitter in this channel is modeled as being able to communicate to either the destination or the relay by creating a direct-link or a relay-link, respectively. For dual-band MARC, we characterize an achievable region and a set of rate upper bounds, and then obtain sufficient channel conditions under which its capacity region is characterized. Similar to the dual-band IC, the performance of the dual-band MARC will likely be significantly affected by whether the mm-wave band is used as direct-links or relay-links, and a non-trivial trade-off between the two modes exists in this case as well. To understand this trade-off, we study the transmission power allocation scheme over the mm-wave direct and relay-links that maximizes the sum-rate of the dual-band MARC. The resulting power allocation scheme, characterized in closed form, is observed to have rich structural properties, which reveal insights into the trade-offs in relay cooperation in dual-band networks. While dual-band communication is a promising technology, currently the bulk of the connectivity is still supported by the microwave band. However, the problem of interference mitigation for conventional microwave bands is still open even for the basic case of a two-user IC. Motivated by this, in the third part of the thesis, we study the performance limits of the multiple-access interference channel (MAIC) which models the interference during cellular uplink over the conventional single band. Focusing on the weak interference case, which provides a more realistic model of the inter-cell interference, we characterize an achievable strategy and 3 novel upper bounds on the sum-rate in the partially symmetric case, thereby providing improved sum-rate upper and lower bounds in these cases

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    corecore