781,425 research outputs found
Computing GCRDs of Approximate Differential Polynomials
Differential (Ore) type polynomials with approximate polynomial coefficients
are introduced. These provide a useful representation of approximate
differential operators with a strong algebraic structure, which has been used
successfully in the exact, symbolic, setting. We then present an algorithm for
the approximate Greatest Common Right Divisor (GCRD) of two approximate
differential polynomials, which intuitively is the differential operator whose
solutions are those common to the two inputs operators. More formally, given
approximate differential polynomials and , we show how to find "nearby"
polynomials and which have a non-trivial GCRD.
Here "nearby" is under a suitably defined norm. The algorithm is a
generalization of the SVD-based method of Corless et al. (1995) for the
approximate GCD of regular polynomials. We work on an appropriately
"linearized" differential Sylvester matrix, to which we apply a block SVD. The
algorithm has been implemented in Maple and a demonstration of its robustness
is presented.Comment: To appear, Workshop on Symbolic-Numeric Computing (SNC'14) July 201
A simple polynomial time algorithm to approximate the permanent within a simply exponential factor
We present a simple randomized polynomial time algorithm to approximate the
mixed discriminant of positive semidefinite matrices within a
factor . Consequently, the algorithm allows us to approximate in
randomized polynomial time the permanent of a given non-negative
matrix within a factor . When applied to approximating the permanent,
the algorithm turns out to be a simple modification of the well-known
Godsil-Gutman estimator
FPT-Algorithms for Computing Gromov-Hausdorff and Interleaving Distances Between Trees
The Gromov-Hausdorff distance is a natural way to measure the distortion between two metric spaces. However, there has been only limited algorithmic development to compute or approximate this distance. We focus on computing the Gromov-Hausdorff distance between two metric trees. Roughly speaking, a metric tree is a metric space that can be realized by the shortest path metric on a tree. Any finite tree with positive edge weight can be viewed as a metric tree where the weight is treated as edge length and the metric is the induced shortest path metric in the tree. Previously, Agarwal et al. showed that even for trees with unit edge length, it is NP-hard to approximate the Gromov-Hausdorff distance between them within a factor of 3. In this paper, we present a fixed-parameter tractable (FPT) algorithm that can approximate the Gromov-Hausdorff distance between two general metric trees within a multiplicative factor of 14.
Interestingly, the development of our algorithm is made possible by a connection between the Gromov-Hausdorff distance for metric trees and the interleaving distance for the so-called merge trees. The merge trees arise in practice naturally as a simple yet meaningful topological summary (it is a variant of the Reeb graphs and contour trees), and are of independent interest. It turns out that an exact or approximation algorithm for the interleaving distance leads to an approximation algorithm for the Gromov-Hausdorff distance. One of the key contributions of our work is that we re-define the interleaving distance in a way that makes it easier to develop dynamic programming approaches to compute it. We then present a fixed-parameter tractable algorithm to compute the interleaving distance between two merge trees exactly, which ultimately leads to an FPT-algorithm to approximate the Gromov-Hausdorff distance between two metric trees. This exact FPT-algorithm to compute the interleaving distance between merge trees is of interest itself, as it is known that it is NP-hard to approximate it within a factor of 3, and previously the best known algorithm has an approximation factor of O(sqrt{n}) even for trees with unit edge length
- …
