42,786 research outputs found

    Node harvest

    Full text link
    When choosing a suitable technique for regression and classification with multivariate predictor variables, one is often faced with a tradeoff between interpretability and high predictive accuracy. To give a classical example, classification and regression trees are easy to understand and interpret. Tree ensembles like Random Forests provide usually more accurate predictions. Yet tree ensembles are also more difficult to analyze than single trees and are often criticized, perhaps unfairly, as `black box' predictors. Node harvest is trying to reconcile the two aims of interpretability and predictive accuracy by combining positive aspects of trees and tree ensembles. Results are very sparse and interpretable and predictive accuracy is extremely competitive, especially for low signal-to-noise data. The procedure is simple: an initial set of a few thousand nodes is generated randomly. If a new observation falls into just a single node, its prediction is the mean response of all training observation within this node, identical to a tree-like prediction. A new observation falls typically into several nodes and its prediction is then the weighted average of the mean responses across all these nodes. The only role of node harvest is to `pick' the right nodes from the initial large ensemble of nodes by choosing node weights, which amounts in the proposed algorithm to a quadratic programming problem with linear inequality constraints. The solution is sparse in the sense that only very few nodes are selected with a nonzero weight. This sparsity is not explicitly enforced. Maybe surprisingly, it is not necessary to select a tuning parameter for optimal predictive accuracy. Node harvest can handle mixed data and missing values and is shown to be simple to interpret and competitive in predictive accuracy on a variety of data sets.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS367 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Learning stable weights for data of varying dimension

    Get PDF
    In this paper we develop a data-driven weight learning method for weighted quasiarithmetic means where the observed data may vary in dimension

    Enhancing Domain Word Embedding via Latent Semantic Imputation

    Full text link
    We present a novel method named Latent Semantic Imputation (LSI) to transfer external knowledge into semantic space for enhancing word embedding. The method integrates graph theory to extract the latent manifold structure of the entities in the affinity space and leverages non-negative least squares with standard simplex constraints and power iteration method to derive spectral embeddings. It provides an effective and efficient approach to combining entity representations defined in different Euclidean spaces. Specifically, our approach generates and imputes reliable embedding vectors for low-frequency words in the semantic space and benefits downstream language tasks that depend on word embedding. We conduct comprehensive experiments on a carefully designed classification problem and language modeling and demonstrate the superiority of the enhanced embedding via LSI over several well-known benchmark embeddings. We also confirm the consistency of the results under different parameter settings of our method.Comment: ACM SIGKDD 201

    Network Plasticity as Bayesian Inference

    Full text link
    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling.Comment: 33 pages, 5 figures, the supplement is available on the author's web page http://www.igi.tugraz.at/kappe
    • …
    corecore