280 research outputs found

    Towards a unified model for speech and language processing

    Full text link
    Ce travail de recherche explore les méthodes d’apprentissage profond de la parole et du langage, y inclus la reconnaissance et la synthèse de la parole, la conversion des graphèmes en phonèmes et vice-versa, les modèles génératifs, visant de reformuler des tâches spécifiques dans un problème plus général de trouver une représentation universelle d’information contenue dans chaque modalité et de transférer un signal d’une modalité à une autre en se servant de telles représentations universelles et à générer des représentations dans plusieurs modalités. Il est compris de deux projets de recherche: 1) SoundChoice, un modèle graphème-phonème tenant compte du contexte au niveau de la phrase qui réalise de bonnes performances et des améliorations remarquables comparativement à un modèle de base et 2) MAdmixture, une nouvelle approche pour apprendre des représentations multimodales dans un espace latent commun.The present work explores the use of deep learning methods applied to a variety of areas in speech and language processing including speech recognition, grapheme-to-phoneme conversion, speech synthesis, generative models for speech and others to build toward a unified approach that reframes these individual tasks into a more general problem of finding a universal representation of information encoded in different modalities and being able to seamlessly transfer a signal from one modality to another by converting it to this universal representations and to generate samples in multiple modalities. It consists of two main research projects: 1) SoundChocice, a context-aware sentence level Grapheme-to-Phoneme model achieving solid performance on the task and a significant improvement on phoneme disambiguation over baseline models and 2) MAdmixture, a novel approach to learning a variety of speech representations in a common latent space

    Acoustic Modelling for Under-Resourced Languages

    Get PDF
    Automatic speech recognition systems have so far been developed only for very few languages out of the 4,000-7,000 existing ones. In this thesis we examine methods to rapidly create acoustic models in new, possibly under-resourced languages, in a time and cost effective manner. For this we examine the use of multilingual models, the application of articulatory features across languages, and the automatic discovery of word-like units in unwritten languages

    Rapid Generation of Pronunciation Dictionaries for new Domains and Languages

    Get PDF
    This dissertation presents innovative strategies and methods for the rapid generation of pronunciation dictionaries for new domains and languages. Depending on various conditions, solutions are proposed and developed. Starting from the straightforward scenario in which the target language is present in written form on the Internet and the mapping between speech and written language is close up to the difficult scenario in which no written form for the target language exists

    Conversational Arabic Automatic Speech Recognition

    Get PDF
    Colloquial Arabic (CA) is the set of spoken variants of modern Arabic that exist in the form of regional dialects and are considered generally to be mother-tongues in those regions. CA has limited textual resource because it exists only as a spoken language and without a standardised written form. Normally the modern standard Arabic (MSA) writing convention is employed that has limitations in phonetically representing CA. Without phonetic dictionaries the pronunciation of CA words is ambiguous, and can only be obtained through word and/or sentence context. Moreover, CA inherits the MSA complex word structure where words can be created from attaching affixes to a word. In automatic speech recognition (ASR), commonly used approaches to model acoustic, pronunciation and word variability are language independent. However, one can observe significant differences in performance between English and CA, with the latter yielding up to three times higher error rates. This thesis investigates the main issues for the under-performance of CA ASR systems. The work focuses on two directions: first, the impact of limited lexical coverage, and insufficient training data for written CA on language modelling is investigated; second, obtaining better models for the acoustics and pronunciations by learning to transfer between written and spoken forms. Several original contributions result from each direction. Using data-driven classes from decomposed text are shown to reduce out-of-vocabulary rate. A novel colloquialisation system to import additional data is introduced; automatic diacritisation to restore the missing short vowels was found to yield good performance; and a new acoustic set for describing CA was defined. Using the proposed methods improved the ASR performance in terms of word error rate in a CA conversational telephone speech ASR task

    Towards Weakly Supervised Acoustic Subword Unit Discovery and Lexicon Development Using Hidden Markov Models

    Get PDF
    Developing a phonetic lexicon for a language requires linguistic knowledge as well as human effort, which may not be available, particularly for under-resourced languages. An alternative to development of a phonetic lexicon is to automatically derive subword units using acoustic information and generate associated pronunciations. In the literature, this has been mostly studied from the pronunciation variation modeling perspective. In this article, we investigate automatic subword unit derivation from the under-resourced language point of view. Towards that, we present a novel hidden Markov model (HMM) formalism for automatic derivation of subword units and pronunciation generation using only transcribed speech data. In this approach, the subword units are derived from the clustered context-dependent units in a grapheme based system using the maximum-likelihood criterion. The subword unit based pronunciations are then generated either by deterministic or probabilistic learning of the relationship between the graphemes and the acoustic subword units (ASWUs). In this article, we first establish the proposed framework on a well resourced language by comparing it against related approaches in the literature and investigating the transferability of the derived subword units to other domains. We then show the scalability of the proposed approach on real under-resourced scenarios by conducting studies on Scottish Gaelic, a genuinely minority and endangered language, and comparing the approach against state-of-the-art grapheme-based approaches in under-resourced scenarios. Our experimental studies on English show that the derived subword units can not only lead to better ASR systems compared to graphemes, but can also be exploited to build out-of-domain ASR systems. The experimental studies on Scottish Gaelic show that the proposed ASWU-based lexicon development approach retains its dominance over grapheme-based lexicon. Alternately, the proposed approach yields significant gains in ASR performance, even when multilingual resources from resource-rich languages are exploited in the development of ASR systems

    An HMM-Based Formalism for Automatic Subword Unit Derivation and Pronunciation Generation

    Get PDF
    We propose a novel hidden Markov model (HMM) formalism for automatic derivation of subword units and pronunciation generation using only transcribed speech data. In this approach, the subword units are derived from the clustered context-dependent units in a grapheme based system using maximum-likelihood criterion. The subword unit based pronunciations are then learned in the framework of Kullback-Leibler divergence based HMM. The automatic speech recognition (ASR) experiments on WSJ0 English corpus show that the approach leads to 12.7 % relative reduction in word error rate compared to grapheme-based system. Our approach can be bene-ficial in reducing the need for expert knowledge in development of ASR as well as text-to-speech systems. Index Terms — automatic subword unit derivation, pronuncia-tion generation, hidden Markov model, Kullback-Leibler divergence based hidden Markov model 1
    • …
    corecore