12,970 research outputs found

    Learning Rich Geographical Representations: Predicting Colorectal Cancer Survival in the State of Iowa

    Full text link
    Neural networks are capable of learning rich, nonlinear feature representations shown to be beneficial in many predictive tasks. In this work, we use these models to explore the use of geographical features in predicting colorectal cancer survival curves for patients in the state of Iowa, spanning the years 1989 to 2012. Specifically, we compare model performance using a newly defined metric -- area between the curves (ABC) -- to assess (a) whether survival curves can be reasonably predicted for colorectal cancer patients in the state of Iowa, (b) whether geographical features improve predictive performance, and (c) whether a simple binary representation or richer, spectral clustering-based representation perform better. Our findings suggest that survival curves can be reasonably estimated on average, with predictive performance deviating at the five-year survival mark. We also find that geographical features improve predictive performance, and that the best performance is obtained using richer, spectral analysis-elicited features.Comment: 8 page

    Disease modeling using Evolved Discriminate Function

    Get PDF
    Precocious diagnosis increases the survival time and patient quality of life. It is a binary classification, exhaustively studied in the literature. This paper innovates proposing the application of genetic programming to obtain a discriminate function. This function contains the disease dynamics used to classify the patients with as little false negative diagnosis as possible. If its value is greater than zero then it means that the patient is ill, otherwise healthy. A graphical representation is proposed to show the influence of each dataset attribute in the discriminate function. The experiment deals with Breast Cancer and Thrombosis & Collagen diseases diagnosis. The main conclusion is that the discriminate function is able to classify the patient using numerical clinical data, and the graphical representation displays patterns that allow understanding of the model

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Association Rules Mining Based Clinical Observations

    Full text link
    Healthcare institutes enrich the repository of patients' disease related information in an increasing manner which could have been more useful by carrying out relational analysis. Data mining algorithms are proven to be quite useful in exploring useful correlations from larger data repositories. In this paper we have implemented Association Rules mining based a novel idea for finding co-occurrences of diseases carried by a patient using the healthcare repository. We have developed a system-prototype for Clinical State Correlation Prediction (CSCP) which extracts data from patients' healthcare database, transforms the OLTP data into a Data Warehouse by generating association rules. The CSCP system helps reveal relations among the diseases. The CSCP system predicts the correlation(s) among primary disease (the disease for which the patient visits the doctor) and secondary disease/s (which is/are other associated disease/s carried by the same patient having the primary disease).Comment: 5 pages, MEDINFO 2010, C. Safran et al. (Eds.), IOS Pres
    • …
    corecore