13,446 research outputs found

    Universally Decodable Matrices for Distributed Matrix-Vector Multiplication

    Get PDF
    Coded computation is an emerging research area that leverages concepts from erasure coding to mitigate the effect of stragglers (slow nodes) in distributed computation clusters, especially for matrix computation problems. In this work, we present a class of distributed matrix-vector multiplication schemes that are based on codes in the Rosenbloom-Tsfasman metric and universally decodable matrices. Our schemes take into account the inherent computation order within a worker node. In particular, they allow us to effectively leverage partial computations performed by stragglers (a feature that many prior works lack). An additional main contribution of our work is a companion matrix-based embedding of these codes that allows us to obtain sparse and numerically stable schemes for the problem at hand. Experimental results confirm the effectiveness of our techniques.Comment: 6 pages, 1 figur

    Efficient, sparse representation of manifold distance matrices for classical scaling

    Full text link
    Geodesic distance matrices can reveal shape properties that are largely invariant to non-rigid deformations, and thus are often used to analyze and represent 3-D shapes. However, these matrices grow quadratically with the number of points. Thus for large point sets it is common to use a low-rank approximation to the distance matrix, which fits in memory and can be efficiently analyzed using methods such as multidimensional scaling (MDS). In this paper we present a novel sparse method for efficiently representing geodesic distance matrices using biharmonic interpolation. This method exploits knowledge of the data manifold to learn a sparse interpolation operator that approximates distances using a subset of points. We show that our method is 2x faster and uses 20x less memory than current leading methods for solving MDS on large point sets, with similar quality. This enables analyses of large point sets that were previously infeasible.Comment: Conference CVPR 201
    • …
    corecore