69,120 research outputs found

    Three-points interfacial quadrature for geometrical source terms on nonuniform grids

    Get PDF
    International audienceThis paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells' size, for which LpL^p-error estimates, 1p<+1\le p < +\infty, are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem's data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics)

    A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure

    Full text link
    In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes the resulting systems of nonlinear algebraic equations are solved with Newton's method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust and efficient. In particular no post-processing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and three-dimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1000 processors

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Approximately counting semismooth integers

    Full text link
    An integer nn is (y,z)(y,z)-semismooth if n=pmn=pm where mm is an integer with all prime divisors y\le y and pp is 1 or a prime z\le z. arge quantities of semismooth integers are utilized in modern integer factoring algorithms, such as the number field sieve, that incorporate the so-called large prime variant. Thus, it is useful for factoring practitioners to be able to estimate the value of Ψ(x,y,z)\Psi(x,y,z), the number of (y,z)(y,z)-semismooth integers up to xx, so that they can better set algorithm parameters and minimize running times, which could be weeks or months on a cluster supercomputer. In this paper, we explore several algorithms to approximate Ψ(x,y,z)\Psi(x,y,z) using a generalization of Buchstab's identity with numeric integration.Comment: To appear in ISSAC 2013, Boston M

    Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    Full text link
    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetization tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii)

    Predicativity and parametric polymorphism of Brouwerian implication

    Get PDF
    A common objection to the definition of intuitionistic implication in the Proof Interpretation is that it is impredicative. I discuss the history of that objection, argue that in Brouwer's writings predicativity of implication is ensured through parametric polymorphism of functions on species, and compare this construal with the alternative approaches to predicative implication of Goodman, Dummett, Prawitz, and Martin-L\"of.Comment: Added further references (Pistone, Poincar\'e, Tabatabai, Van Atten
    corecore