2,610,630 research outputs found
The Logic of Time: from Aristotle to Computer Science
Charla tipo conferencia-seminario dada para alumnos de un másterThis short course will explore that continuous thread which connects the discussion about time in philosophy with the modern use of temporal logic in computer science. It will go through the history of temporal logic to show how ideas developed by ancient and medieval philosophy have been rediscovered in modern times and applied to solve relevant problems in computer science.
Part 1: An historical perspective on temporal logic
• Synthesis: the nature of time is a central issue of classical and medieval phylosophy • Downfall: in the Renaissance the subject loses interest and is removed from the philo-
sophical discussion • Rediscovery: in the 19th and 20th centory temporal logic become a central issue again
Part 2: Time in Computer Science
• Algorithms, states and computations • Imperative programs and Reactive programs • Temporal Logic for Computer Science: CTL and LTL • The satisfiability problem • The model checking problemUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Status of research at the Institute for Computer Applications in Science and Engineering (ICASE)
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science is summarized
Convex Analysis and Optimization with Submodular Functions: a Tutorial
Set-functions appear in many areas of computer science and applied
mathematics, such as machine learning, computer vision, operations research or
electrical networks. Among these set-functions, submodular functions play an
important role, similar to convex functions on vector spaces. In this tutorial,
the theory of submodular functions is presented, in a self-contained way, with
all results shown from first principles. A good knowledge of convex analysis is
assumed
Self-Evaluation Applied Mathematics 2003-2008 University of Twente
This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation
This paper employs a powerful argument, called an algorithmic argument, to
prove lower bounds of the quantum query complexity of a multiple-block ordered
search problem in which, given a block number i, we are to find a location of a
target keyword in an ordered list of the i-th block. Apart from much studied
polynomial and adversary methods for quantum query complexity lower bounds, our
argument shows that the multiple-block ordered search needs a large number of
nonadaptive oracle queries on a black-box model of quantum computation that is
also supplemented with advice. Our argument is also applied to the notions of
computational complexity theory: quantum truth-table reducibility and quantum
truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the
29th International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27,
200
- …
