10 research outputs found

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal p\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α(0,2)\alpha\in(0,2), α1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems

    Numerical convergence for semilinear parabolic equations

    Get PDF
    We present a convergence result for finite element discretisations of semilinear parabolic equations, in which the evaluation of the nonlinearity requires some high order of regularity of the solution. For example a coefficient might depend on derivatives or pointevaluation of the solution. We do not rely on high regularity of the exact solution itself and as a payoff we can not deduce convergence rates. As an example the convergence result is applied to a nonlinear Fokker--Planck type battery model

    Error analysis of energy-conservative BDF2-FE scheme for the 2D Navier-Stokes equations with variable density

    Full text link
    In this paper, we present an error estimate of a second-order linearized finite element (FE) method for the 2D Navier-Stokes equations with variable density. In order to get error estimates, we first introduce an equivalent form of the original system. Later, we propose a general BDF2-FE method for solving this equivalent form, where the Taylor-Hood FE space is used for discretizing the Navier-Stokes equations and conforming FE space is used for discretizing density equation. We show that our scheme ensures discrete energy dissipation. Under the assumption of sufficient smoothness of strong solutions, an error estimate is presented for our numerical scheme for variable density incompressible flow in two dimensions. Finally, some numerical examples are provided to confirm our theoretical results.Comment: 22 pages, 1 figure
    corecore