2,152 research outputs found

    Applications of Intuitionistic Logic in Answer Set Programming

    Full text link
    We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.Comment: 30 pages, Under consideration for publication in Theory and Practice of Logic Programmin

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    A Polynomial Translation of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary Report

    Full text link
    Nested logic programs have recently been introduced in order to allow for arbitrarily nested formulas in the heads and the bodies of logic program rules under the answer sets semantics. Nested expressions can be formed using conjunction, disjunction, as well as the negation as failure operator in an unrestricted fashion. This provides a very flexible and compact framework for knowledge representation and reasoning. Previous results show that nested logic programs can be transformed into standard (unnested) disjunctive logic programs in an elementary way, applying the negation as failure operator to body literals only. This is of great practical relevance since it allows us to evaluate nested logic programs by means of off-the-shelf disjunctive logic programming systems, like DLV. However, it turns out that this straightforward transformation results in an exponential blow-up in the worst-case, despite the fact that complexity results indicate that there is a polynomial translation among both formalisms. In this paper, we take up this challenge and provide a polynomial translation of logic programs with nested expressions into disjunctive logic programs. Moreover, we show that this translation is modular and (strongly) faithful. We have implemented both the straightforward as well as our advanced transformation; the resulting compiler serves as a front-end to DLV and is publicly available on the Web.Comment: 10 pages; published in Proceedings of the 9th International Workshop on Non-Monotonic Reasonin

    Representing First-Order Causal Theories by Logic Programs

    Get PDF
    Nonmonotonic causal logic, introduced by Norman McCain and Hudson Turner, became a basis for the semantics of several expressive action languages. McCain's embedding of definite propositional causal theories into logic programming paved the way to the use of answer set solvers for answering queries about actions described in such languages. In this paper we extend this embedding to nondefinite theories and to first-order causal logic.Comment: 29 pages. To appear in Theory and Practice of Logic Programming (TPLP); Theory and Practice of Logic Programming, May, 201

    Linear-Logic Based Analysis of Constraint Handling Rules with Disjunction

    Full text link
    Constraint Handling Rules (CHR) is a declarative committed-choice programming language with a strong relationship to linear logic. Its generalization CHR with Disjunction (CHRv) is a multi-paradigm declarative programming language that allows the embedding of horn programs. We analyse the assets and the limitations of the classical declarative semantics of CHR before we motivate and develop a linear-logic declarative semantics for CHR and CHRv. We show how to apply the linear-logic semantics to decide program properties and to prove operational equivalence of CHRv programs across the boundaries of language paradigms
    • …
    corecore