3 research outputs found

    Revolve: A Versatile Simulator for Online Robot Evolution

    Get PDF
    Developing robotic systems that can evolve in real-time and real-space is a long term objective with technological as well as algorithmic milestones on the road. Technological prerequisites include advanced 3D-printing, automated assembly, and robust sensors and actuators. The necessary evolutionary mechanisms need not wait for these, they can be developed and investigated in simulations. In this paper, we present a system to simulate online evolution of constructible robots, where (1) the population members (robots) concurrently exist and evolve their morphologies and controllers, (2) all robots can be physically constructed. Experiments with this simulator provide us with insights into differences of using online and offline evolutionary setups

    Soft Scalable Self-Reconfigurable Modular Cellbot

    Get PDF
    Hazardous environments such as disaster affected areas, outer space, and radiation affected areas are dangerous for humans. Autonomous systems which can navigate through these environments would reduce risk of life. The terrains in these applications are diverse and unknown, hence there is a requirement for a robot which can self-adapt its morphology and use suitable control to optimally move in the desired manner. Although there exist monolithic robots for some of these applications, such as the Curiosity rover for Mars exploration, a modular robot containing multiple simple units could increase the fault tolerance. A modular design also enables scaling up or down of the robot based on the current task, for example, scaling up by connecting multiple units to cover a wider area or scaling down to pass through a tight space.Taking bio-inspiration from cells, where – based on environmental conditions – cells come together to form different structures to carry out different tasks, a soft modular robot called Cellbot was developed which was composed of multiple units called ‘cells’. Tests were conducted to understand the cellbot movement over different frictional surfaces for different actuation functions, the number of cells connected in a line (1D), and the shapes formed by connecting cells in 2D. A simulation model was developed to test a large range of frictional values and actuation functions for different friction coefficients. Based on the obtained results, cells could be designed using a material with frictional properties lying in the optimal locomotion range. In other cases, where the application has diverse terrains, the number of connected units can be changed to optimise the robot locomotion. Initial tests were conducted using a ‘ball robot’, where the cellbot was designed using balls which touch ground to exploit friction and actuators to provide force to move the robot. The model was extended to develop, a ‘bellow robot’ which was fabricated using hyper-elastic bellows and employed pneumatic actuation. The amount of inflation of a cell and its neighbouring cells determined if the cell would touch the ground or be lifted up. This was used to change cell behaviour where a cell could be touching ground to provide anchoring friction, or lifted to push or pull the cells and thereby move the robot. The cells were connected by magnets which could be disconnected and reconnected by morphing the robot body. The cellbot can thus reconfigure by changing the number of connected units or its shape. The easy detachment can be used to remove and replace damaged cells. Complex cellbot movements can be achieved by either switching between different robot morphologies or by changing actuation control.Future cellbots will be controlled remotely to change their morphology, control, and number of connected cells, making them suitable for missions which require fault tolerance and autonomous shape adaptation. The proposed cellbot platform has the potential to reduce the energy, time and costs in comparison to traditional robots and has potential for applications such as exploration missions for outer space, search and rescue missions for disaster affected areas, internal medical procedures, and nuclear decommissioning.<br/
    corecore