6,960 research outputs found

    Service and device discovery of nodes in a wireless sensor network

    Get PDF
    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor\ud nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device and the resources can be described as services, and in this paper, we review a number of well-known service discovery protocols. Bonjour stands out with its auto-configuration, distributed architecture, and sharing of resources. We also present a lightweight implementation in order to demonstrate that an emerging standards-based device and service discovery protocol can actually be deployed on small wireless sensor nodes

    Exploring the Design of Pay-Per-Use Objects in the Construction Domain

    Get PDF
    Equipment used in the construction domain is often hired in order to reduce cost and maintenance overhead. The cost of hire is dependent on the time period involved and does not take into account the actual use equipment has received. This paper presents our initial investigation into how physical objects augmented with sensing and communication technologies can measure use in order to enable new pay-per-use payment models for equipment hire. We also explore user interaction with pay-per-use objects via mobile devices. The user interactions that take place within our prototype scenario range from simple information access to transactions involving multiple users. This paper presents the design, implementation and evaluation of a prototype pay-per-use system motivated by a real world equipment hire scenario. We also provide insights into the various challenges introduced by supporting a pay-per-use model, including data storage and data security in addition to user interaction issues

    MOSAIC vision and scenarios for mobile collaborative work related to health and wellbeing

    Get PDF
    The main objective of the MOSAIC project is to accelerate innovation in Mobile Worker Support Environments by shaping future research and innovation activities in Europe. The modus operandi of MOSAIC is to develop visions and illustrative scenarios for future collaborative workspaces involving mobile and location-aware working. Analysis of the scenarios is input to the process of road mapping with the purpose of developing strategies for R&D leading to deployment of innovative mobile work technologies and applications across different domains. This paper relates to one specific domain, that of Health and Wellbeing. The focus is therefore is on mobile working environments which enable mobile collaborative working related to the domain of healthcare and wellbeing services for citizens. This paper reports the work of MOSAIC T2.2 on the vision and scenarios for mobile collaborative work related to this domain. This work was also an input to the activity of developing the MOSAIC roadmap for future research and development targeted at realization of the future Health and Wellbeing vision. The MOSAIC validation process for the Health and Wellbeing scenarios is described and one scenario – the Major Incident Scenario - is presented in detail

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform

    Enabling High-Level Application Development for the Internet of Things

    Get PDF
    Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have to address issues that can be attributed to different life-cycles phases. when developing applications. First, the application logic has to be analyzed and then separated into a set of distributed tasks for an underlying network. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices. Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous and pervasive computing, and software engineering in general to address the above challenges. However, existing approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This paper proposes an integrated approach for addressing the above mentioned challenges. The main contributions of this paper are: (1) a development methodology that separates IoT application development into different concerns and provides a conceptual framework to develop an application, (2) a development framework that implements the development methodology to support actions of stakeholders. The development framework provides a set of modeling languages to specify each development concern and abstracts the scale and heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to provide automation. Code generation supports the application development phase by producing a programming framework that allows stakeholders to focus on the application logic, while our mapping and linking techniques together support the deployment phase by producing device-specific code to result in a distributed system collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that the use of our approach improves the productivity of stakeholders involved in the application development

    Inspirational Bits - Towards a Shared Understanding of the Digital Material

    Get PDF
    In any design process, a medium’s properties need to be considered. This is nothing new in design. Still we find that in HCI and interactive systems design the properties of a technology are often glossed over. That is, technologies are black-boxed without much thought given to how their distinctive properties open up design possibilities. In this paper we describe what we call inspirational bits as a way to become more familiar with the design material in HCI, the digital material. We describe inspirational bits as quick and dirty but fully working systems in both hardware and software built with the aim of exposing one or several of the dynamic properties of a digital material. We also show how they provide a means of sharing design knowledge across the members of a multi-disciplined design team

    An IoT-oriented fast prototyping platform for BLE-based star topology networks

    Get PDF
    The Internet of Things (IoT) is characterized by many technologies, standards, tools and devices for a wide range of application fields and often, for the end-users (makers and developers), is hard to orientate in an equally wide range of offers from various manufacturers. In recent years, the Bluetooth Low Energy (BLE) communication protocol is achieving a large portion of the market, thanks to its low-power and low-cost orientation and its pervasiveness in mobile devices, like smartphones. For these reasons, BLE is increasingly used in IoT-oriented Wireless Personal Area Networks (WPAN), where a small set of devices arranged in star topology network and connected to a smartphone and a Wi-Fi gateway, can cover a large number of monitoring and controlling use case scenarios. This work presents the ST’s STM32 Open Development Environment (ODE), a complete suite of hardware and software tools representing a reference point for end-users willing to create BLE-based star topology networks for a wide range of applications. Through a simple use case in a smart home context, it is shown how all provided tools can be used to fast prototype applications addressing all user requirements

    Dance of the bulrushes: building conversations between social creatures

    Get PDF
    The interactive installation is in vogue. Interaction design and physical installations are accepted fixtures of modern life, and with these technology-driven installations beginning to exert influence on modes of mass communication and general expectations for user experiences, it seems appropriate to explore the variety of interactions that exist. This paper surveys a number of successful projects with a critical eye toward assessing the type of communication and/or conversation generated between interactive installations and human participants. Moreover, this exploration seeks to identify whether specific tactics and/or technologies are particularly suited to engendering layers of dialogue or ‘conversations’ within interactive physical computing installations. It is asserted that thoughtful designs incorporating self-organizational abilities can foster rich dialogues in which participants and the installation collaboratively generate value in the interaction. To test this hypothesis an interactive installation was designed and deployed in locations in and around London. Details of the physical objects and employed technologies are discussed, and results of the installation sessions are shown to corroborate the key tenets of this argument in addition to highlighting other concerns that are specifically relevant to the broad topic of interactive design
    • 

    corecore