4 research outputs found

    Application of three graph Laplacian based semi-supervised learning methods to protein function prediction problem

    Full text link
    Protein function prediction is the important problem in modern biology. In this paper, the un-normalized, symmetric normalized, and random walk graph Laplacian based semi-supervised learning methods will be applied to the integrated network combined from multiple networks to predict the functions of all yeast proteins in these multiple networks. These multiple networks are network created from Pfam domain structure, co-participation in a protein complex, protein-protein interaction network, genetic interaction network, and network created from cell cycle gene expression measurements. Multiple networks are combined with fixed weights instead of using convex optimization to determine the combination weights due to high time complexity of convex optimization method. This simple combination method will not affect the accuracy performance measures of the three semi-supervised learning methods. Experiment results show that the un-normalized and symmetric normalized graph Laplacian based methods perform slightly better than random walk graph Laplacian based method for integrated network. Moreover, the accuracy performance measures of these three semi-supervised learning methods for integrated network are much better than the best accuracy performance measures of these three methods for the individual network.Comment: 16 pages, 9 table

    Hypergraph based semi-supervised learning algorithms applied to speech recognition problem: a novel approach

    Full text link
    Most network-based speech recognition methods are based on the assumption that the labels of two adjacent speech samples in the network are likely to be the same. However, assuming the pairwise relationship between speech samples is not complete. The information a group of speech samples that show very similar patterns and tend to have similar labels is missed. The natural way overcoming the information loss of the above assumption is to represent the feature data of speech samples as the hypergraph. Thus, in this paper, the three un-normalized, random walk, and symmetric normalized hypergraph Laplacian based semi-supervised learning methods applied to hypergraph constructed from the feature data of speech samples in order to predict the labels of speech samples are introduced. Experiment results show that the sensitivity performance measures of these three hypergraph Laplacian based semi-supervised learning methods are greater than the sensitivity performance measures of the Hidden Markov Model method (the current state of the art method applied to speech recognition problem) and graph based semi-supervised learning methods (i.e. the current state of the art network-based method for classification problems) applied to network created from the feature data of speech samples.Comment: 11 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1212.038

    To Detect Irregular Trade Behaviors In Stock Market By Using Graph Based Ranking Methods

    Full text link
    To detect the irregular trade behaviors in the stock market is the important problem in machine learning field. These irregular trade behaviors are obviously illegal. To detect these irregular trade behaviors in the stock market, data scientists normally employ the supervised learning techniques. In this paper, we employ the three graph Laplacian based semi-supervised ranking methods to solve the irregular trade behavior detection problem. Experimental results show that that the un-normalized and symmetric normalized graph Laplacian based semi-supervised ranking methods outperform the random walk Laplacian based semi-supervised ranking method.Comment: 11 page

    Tensor Sparse PCA and Face Recognition: A Novel Approach

    Full text link
    Face recognition is the important field in machine learning and pattern recognition research area. It has a lot of applications in military, finance, public security, to name a few. In this paper, the combination of the tensor sparse PCA with the nearest-neighbor method (and with the kernel ridge regression method) will be proposed and applied to the face dataset. Experimental results show that the combination of the tensor sparse PCA with any classification system does not always reach the best accuracy performance measures. However, the accuracy of the combination of the sparse PCA method and one specific classification system is always better than the accuracy of the combination of the PCA method and one specific classification system and is always better than the accuracy of the classification system itself.Comment: It has some errors in the experimental sectio
    corecore