220,614 research outputs found

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Designing IS service strategy: an information acceleration approach

    Get PDF
    Information technology-based innovation involves considerable risk that requires insight and foresight. Yet, our understanding of how managers develop the insight to support new breakthrough applications is limited and remains obscured by high levels of technical and market uncertainty. This paper applies a new experimental method based on “discrete choice analysis” and “information acceleration” to directly examine how decisions are made in a way that is behaviourally sound. The method is highly applicable to information systems researchers because it provides relative importance measures on a common scale, greater control over alternate explanations and stronger evidence of causality. The practical implications are that information acceleration reduces the levels of uncertainty and generates a more accurate rationale for IS service strategy decisions

    Cognitive finance: Behavioural strategies of spending, saving, and investing.

    Get PDF
    Research in economics is increasingly open to empirical results. The advances in behavioural approaches are expanded here by applying cognitive methods to financial questions. The field of "cognitive finance" is approached by the exploration of decision strategies in the financial settings of spending, saving, and investing. Individual strategies in these different domains are searched for and elaborated to derive explanations for observed irregularities in financial decision making. Strong context-dependency and adaptive learning form the basis for this cognition-based approach to finance. Experiments, ratings, and real world data analysis are carried out in specific financial settings, combining different research methods to improve the understanding of natural financial behaviour. People use various strategies in the domains of spending, saving, and investing. Specific spending profiles can be elaborated for a better understanding of individual spending differences. It was found that people differ along four dimensions of spending, which can be labelled: General Leisure, Regular Maintenance, Risk Orientation, and Future Orientation. Saving behaviour is strongly dependent on how people mentally structure their finance and on their self-control attitude towards decision space restrictions, environmental cues, and contingency structures. Investment strategies depend on how companies, in which investments are placed, are evaluated on factors such as Honesty, Prestige, Innovation, and Power. Further on, different information integration strategies can be learned in decision situations with direct feedback. The mapping of cognitive processes in financial decision making is discussed and adaptive learning mechanisms are proposed for the observed behavioural differences. The construal of a "financial personality" is proposed in accordance with other dimensions of personality measures, to better acknowledge and predict variations in financial behaviour. This perspective enriches economic theories and provides a useful ground for improving individual financial services

    Fostering the reduction of assortative mixing or homophily into the class

    Get PDF
    Human societies from the outset have been associated according to race, beliefs, religion, social level, and the like. These behaviors continue even today in the classroom at primary, middle, and superior levels. However, the growth of ICT offers educational researchers new ways to explore methods of team formation that have been proven to be efficient in the field of serious games through the use of computer networks. The selection process of team members in serious games through the use of computer networks is carried out according to their performance in the area of the game without distinction of social variables. The use of serious games in education has been discussed in multiple research studies which state that its application in teaching and learning processes are changing the way of teaching. This article presents an exploratory analysis of the team formation process based on collaboration through the use of ICT tools of collective intelligence called TBT (The best team). The process and its ICT tool combine the paradigms of creativity in swarming, collective intelligence, serious games, and social computing in order to capture the participants’ emotions and evaluate contributions. Based on the results, we consider that the use of new forms of teaching and learning based on the emerging paradigms is necessary. Therefore, TBT is a tool that could become an effective way to encourage the formation of work groups by evaluating objective variable of performance of its members in collaborative works.Postprint (published version

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Algorithm Selection Framework for Cyber Attack Detection

    Full text link
    The number of cyber threats against both wired and wireless computer systems and other components of the Internet of Things continues to increase annually. In this work, an algorithm selection framework is employed on the NSL-KDD data set and a novel paradigm of machine learning taxonomy is presented. The framework uses a combination of user input and meta-features to select the best algorithm to detect cyber attacks on a network. Performance is compared between a rule-of-thumb strategy and a meta-learning strategy. The framework removes the conjecture of the common trial-and-error algorithm selection method. The framework recommends five algorithms from the taxonomy. Both strategies recommend a high-performing algorithm, though not the best performing. The work demonstrates the close connectedness between algorithm selection and the taxonomy for which it is premised.Comment: 6 pages, 7 figures, 1 table, accepted to WiseML '2
    • …
    corecore