24,974 research outputs found

    Introduction to TIPS: a theory for creative design

    Get PDF
    A highly intriguing problem in combining artificial intelligence and engineering design is automation of the creative and innovative phases of the design process. This paper gives a brief introduction to the theory of inventive problem solving (TIPS) selected as a theoretical basis of the authors' research efforts in this field. The research is conducted in the Stevin Project of the Knowledge-Based System Group of the University of Twente (Enschede, The Netherlands) in cooperation with the Invention Machine Laboratory (Minsk, Belarus). This collaboration aims at developing a formal basis for the creation of an automated reasoning system to support creative engineering design

    A comparison between the Functional Analysis and the Causal-Loop Diagram to model inventive problems

    Get PDF
    The pressure of the market, the exigencies of the society, and the environmental restrictions ask for new problem-solving approaches. In this context, the Theory of Inventive Problem Solving (TRIZ) offers several advantages: it is a knowledge-based approach for problem-solving that links the problem requirements with some engineering models to guide the solving process. However, the learning process of TRIZ and its use with a practical purpose reveal many drawbacks. A significant problem, while using TRIZ, emerges when the user needs to analyze and formulate an inventive problem. To deal with this issue, a combination of TRIZ with other tools seems the best strategy. The use of the Functional Analysis (FA) is one of the best examples. Despite the usefulness of the FA technique, a difficulty remains: it is a complex task to model the causal relationship between several parameters or conditions within a system. However, a tool used in the System Dynamics Modeling deals well with this situation. The System Dynamics (SD) analyzes the nonlinear behavior of complex systems over time. Congruent with recent TRIZ advances, the SD is a computer aided-approach with an extended application domain, practically in any complex system-social, managerial, economic or natural system defined by some relationships, a flow of information, and some effects of causality. Hence, SD can produce useful information when there are several conflicts in a system, also called a problem network. SD uses a graphical tool to model the variables and states of a system: The Causal-Loop Diagram. This tool is helpful to explain a conflict, the change of a system, or merely the interactions that take place to obtain an effect. This article presents a comparison between the Functional Analysis and the Causal-Loop Diagram to model inventive problems

    The TRIZ-CBR synergy: A knowledge based innovation process

    Get PDF
    Today innovation is recognised as the main driving force in the market. This complex process involves several intangible dimensions, such as creativity, knowledge and social interactions among others. Creativity is the starting point of the process, and knowledge is the force that transforms and materialises creativity in new products, services and processes. In this paper a synergy that aims to assists the innovation process is presented. The synergy combines several concepts and tools of the theory of inventive problem solving (TRIZ) and the case-based reasoning (CBR) process. The main objective of this synergy is to support creative engineering design and problem solving. This synergy is based on the strong link between knowledge and action. In this link, TRIZ offers several concepts and tools to facilitate concept creation and to solve problems, and the CBR process offers a framework capable of storing and reusing knowledge with the aim of accelerating the innovation process

    Computer-Aided Conceptual Design Through TRIZ-based Manipulation of Topological Optimizations

    Get PDF
    Organised by: Cranfield UniversityIn a recent project the authors proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions.Mori Seiki – The Machine Tool Compan

    Systematic Integration of Innovation in Process Improvement Projects Using the Enhanced Sigma-TRIZ Algorithm and Its Effective Use by Means of a Knowledge Management Software Platform

    Get PDF
    In an evolving, highly turbulent and uncertain socio-economic environment, organizations must consider strategies of systematic and continuous integration of innovation within their business systems, as a fundamental condition for sustainable development. Adequate methodologies are required in this respect. A mature framework for integrating innovative problem solving approaches within business process improvement methodologies is proposed in this paper. It considers a TRIZ-centred algorithm in the improvement phase of the DMAIC methodology. The new tool is called enhanced sigma-TRIZ. A case study reveals the practical application of the proposed methodology. The integration of enhanced sigma-TRIZ within a knowledge management software platform (KMSP) is further described. Specific developments to support processes of knowledge creation, knowledge storage and retrieval, knowledge transfer and knowledge application in a friendly and effective way within the KMSP are also highlighted.Process Innovation, Knowledge Management Software Platform, Innovative Problem Solving Methodology, sigma-TRIZ, DMAIC

    Scientific and Technological Regimes in Nanotechnology: Combinatorial Inventors and Performance

    Get PDF
    Academics and policy makers are questioning about the relation between science and technology in the emerging field of nano science and technology (NST) and the effectiveness of different institutional regimes. We analyze the performance of inventors in the NST using multiple indicators. We clustered patents in three groups according to the scientific curricula of the inventors. The first two groups are composed by patents whose inventors respectively are all authors of at least one scientific publication in the NST and none of then has obtained a scientific publication in that field. Thirdly, we isolated those patents that have at least one inventor, who is also author of at least one scientific publication in the NST. The underlining presumption of this classification is that of a proxy of different institutional search regimes of the inventive activity; pure academic research, pure industrial R&D, and academic-industrial research partnerships.Science-Technology Relation, Emerging Field, Nanotechnology, Patent Quality, Inventive Productivity.

    Encapsulating and representing the knowledge on the evaluation of an engineering system

    Get PDF
    This paper proposes a cross-disciplinary methodology for a fundamental question in product development: How can the innovation patterns during the evolution of an engineering system (ES) be encapsulated, so that it can later be mined through data mining analysis methods? Reverse engineering answers the question of which components a developed engineering system consists of, and how the components interact to make the working product. TRIZ answers the question of which problem-solving principles can be, or have been employed in developing that system, in comparison to its earlier versions, or with respect to similar systems. While these two methodologies have been very popular, to the best of our knowledge, there does not yet exist a methodology that reverseengineers and encapsulates and represents the information regarding the complete product development process in abstract terms. This paper suggests such a methodology, that consists of mathematical formalism, graph visualization, and database representation. The proposed approach is demonstrated by analyzing the design and development process for a prototype wrist-rehabilitation robot

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page
    • 

    corecore