136,859 research outputs found

    Online algorithms for POMDPs with continuous state, action, and observation spaces

    Full text link
    Online solvers for partially observable Markov decision processes have been applied to problems with large discrete state spaces, but continuous state, action, and observation spaces remain a challenge. This paper begins by investigating double progressive widening (DPW) as a solution to this challenge. However, we prove that this modification alone is not sufficient because the belief representations in the search tree collapse to a single particle causing the algorithm to converge to a policy that is suboptimal regardless of the computation time. This paper proposes and evaluates two new algorithms, POMCPOW and PFT-DPW, that overcome this deficiency by using weighted particle filtering. Simulation results show that these modifications allow the algorithms to be successful where previous approaches fail.Comment: Added Multilane sectio

    Reinforcement Learning: A Survey

    Full text link
    This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file

    Decentralized Learning for Optimality in Stochastic Dynamic Teams and Games with Local Control and Global State Information

    Full text link
    Stochastic dynamic teams and games are rich models for decentralized systems and challenging testing grounds for multi-agent learning. Previous work that guaranteed team optimality assumed stateless dynamics, or an explicit coordination mechanism, or joint-control sharing. In this paper, we present an algorithm with guarantees of convergence to team optimal policies in teams and common interest games. The algorithm is a two-timescale method that uses a variant of Q-learning on the finer timescale to perform policy evaluation while exploring the policy space on the coarser timescale. Agents following this algorithm are "independent learners": they use only local controls, local cost realizations, and global state information, without access to controls of other agents. The results presented here are the first, to our knowledge, to give formal guarantees of convergence to team optimality using independent learners in stochastic dynamic teams and common interest games
    corecore