4,578 research outputs found

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Conformally invariant elliptic Liouville equation and its symmetry preserving discretization

    Full text link
    The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra o(3,1)o(3,1) as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane E2E_2. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a discretisation procedure developed earlier, we present a difference scheme that is invariant under the group O(3,1)O(3,1) and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under O(3,1)O(3,1) and is itself invariant under a subgroup of O(3,1)O(3,1), namely the O(2)O(2) rotations of the Euclidean plane

    An embedding technique for the solution of reaction-fiffusion equations on algebraic surfaces with isolated singularities

    Get PDF
    In this paper we construct a parametrization-free embedding technique for numerically evolving reaction-diffusion PDEs defined on algebraic curves that possess an isolated singularity. In our approach, we first desingularize the curve by appealing to techniques from algebraic geometry.\ud We create a family of smooth curves in higher dimensional space that correspond to the original curve by projection. Following this, we pose the analogous reaction-diffusion PDE on each member of this family and show that the solutions (their projection onto the original domain) approximate the solution of the original problem. Finally, we compute these approximants numerically by applying the Closest Point Method which is an embedding technique for solving PDEs on smooth surfaces of arbitrary dimension or codimension, and is thus suitable for our situation. In addition, we discuss the potential to generalize the techniques presented for higher-dimensional surfaces with multiple singularities

    Structure Preserving Discretizations of the Liouville Equation and their Numerical Tests

    Full text link
    The main purpose of this article is to show how symmetry structures in partial differential equations can be preserved in a discrete world and reflected in difference schemes. Three different structure preserving discretizations of the Liouville equation are presented and then used to solve specific boundary value problems. The results are compared with exact solutions satisfying the same boundary conditions. All three discretizations are on four point lattices. One preserves linearizability of the equation, another the infinite-dimensional symmetry group as higher symmetries, the third one preserves the maximal finite-dimensional subgroup of the symmetry group as point symmetries. A 9-point invariant scheme that gives a better approximation of the equation, but significantly worse numerical results for solutions is presented and discussed

    Symmetric spaces and Lie triple systems in numerical analysis of differential equations

    Get PDF
    A remarkable number of different numerical algorithms can be understood and analyzed using the concepts of symmetric spaces and Lie triple systems, which are well known in differential geometry from the study of spaces of constant curvature and their tangents. This theory can be used to unify a range of different topics, such as polar-type matrix decompositions, splitting methods for computation of the matrix exponential, composition of selfadjoint numerical integrators and dynamical systems with symmetries and reversing symmetries. The thread of this paper is the following: involutive automorphisms on groups induce a factorization at a group level, and a splitting at the algebra level. In this paper we will give an introduction to the mathematical theory behind these constructions, and review recent results. Furthermore, we present a new Yoshida-like technique, for self-adjoint numerical schemes, that allows to increase the order of preservation of symmetries by two units. Since all the time-steps are positive, the technique is particularly suited to stiff problems, where a negative time-step can cause instabilities

    Algorithms for Mappings and Symmetries of Differential Equations

    Get PDF
    Differential Equations are used to mathematically express the laws of physics and models in biology, finance, and many other fields. Examining the solutions of related differential equation systems helps to gain insights into the phenomena described by the differential equations. However, finding exact solutions of differential equations can be extremely difficult and is often impossible. A common approach to addressing this problem is to analyze solutions of differential equations by using their symmetries. In this thesis, we develop algorithms based on analyzing infinitesimal symmetry features of differential equations to determine the existence of invertible mappings of less tractable systems of differential equations (e.g., nonlinear) into more tractable systems of differential equations (e.g., linear). We also characterize features of the map if it exists. An algorithm is provided to determine if there exists a mapping of a non-constant coefficient linear differential equation to one with constant coefficients. These algorithms are implemented in the computer algebra language Maple, in the form of the MapDETools package. Our methods work directly at the level of systems of equations for infinitesimal symmetries. The key idea is to apply a finite number of differentiations and eliminations to the infinitesimal symmetry systems to yield them in the involutive form, where the properties of Lie symmetry algebra can be explored readily without solving the systems. We also generalize such differential-elimination algorithms to a more frequently applicable case involving approximate real coefficients. This contribution builds on a proposal by Reid et al. of applying Numerical Algebraic Geometry tools to find a general method for characterizing solution components of a system of differential equations containing approximate coefficients in the framework of the Jet geometry. Our numeric-symbolic algorithm exploits the fundamental features of the Jet geometry of differential equations such as differential Hilbert functions. Our novel approach establishes that the components of a differential equation can be represented by certain points called critical points
    corecore