7,947 research outputs found

    The linearization problem of a binary quadratic problem and its applications

    Full text link
    We provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore-Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. Finally, we present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem

    End-to-End Decision Focused Learning using Learned Solvers

    Get PDF
    Achieving fusion of deep learning with combinatorial algorithms promises transformativechanges to AI. Creating an impact in a real-world setting requires AI techniques to span a pipeline from data, to predictive models, to decisions. Aligning these components together requires careful consideration, as having these components trained separately does not account for the end goal of the model. This work surveys general frameworks for melding these components, we focus on the integration of optimization methods with machine learning architectures. We address some challenges and limitations associated with these methods and propose a novel approach to address some of the bottlenecks that arise

    Regret Models and Preprocessing Techniques for Combinatorial Optimization under Uncertainty

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Computational Comparison of Optimization Methods for the Golomb Ruler Problem

    Full text link
    The Golomb ruler problem is defined as follows: Given a positive integer n, locate n marks on a ruler such that the distance between any two distinct pair of marks are different from each other and the total length of the ruler is minimized. The Golomb ruler problem has applications in information theory, astronomy and communications, and it can be seen as a challenge for combinatorial optimization algorithms. Although constructing high quality rulers is well-studied, proving optimality is a far more challenging task. In this paper, we provide a computational comparison of different optimization paradigms, each using a different model (linear integer, constraint programming and quadratic integer) to certify that a given Golomb ruler is optimal. We propose several enhancements to improve the computational performance of each method by exploring bound tightening, valid inequalities, cutting planes and branching strategies. We conclude that a certain quadratic integer programming model solved through a Benders decomposition and strengthened by two types of valid inequalities performs the best in terms of solution time for small-sized Golomb ruler problem instances. On the other hand, a constraint programming model improved by range reduction and a particular branching strategy could have more potential to solve larger size instances due to its promising parallelization features

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Inverse polynomial optimization

    Full text link
    We consider the inverse optimization problem associated with the polynomial program f^*=\min \{f(x): x\in K\}andagivencurrentfeasiblesolution and a given current feasible solution y\in K.Weprovideasystematicnumericalschemetocomputeaninverseoptimalsolution.Thatis,wecomputeapolynomial. We provide a systematic numerical scheme to compute an inverse optimal solution. That is, we compute a polynomial \tilde{f}(whichmaybeofsamedegreeas (which may be of same degree as fifdesired)withthefollowingproperties:(a) if desired) with the following properties: (a) yisaglobalminimizerof is a global minimizer of \tilde{f}on on KwithaPutinarscertificatewithanaprioridegreebound with a Putinar's certificate with an a priori degree bound dfixed,and(b), fixed, and (b), \tilde{f}minimizes minimizes \Vert f-\tilde{f}\Vert(whichcanbethe (which can be the \ell_1,, \ell_2or or \ell_\inftynormofthecoefficients)overallpolynomialswithsuchproperties.Computing-norm of the coefficients) over all polynomials with such properties. Computing \tilde{f}_dreducestosolvingasemidefiniteprogramwhoseoptimalvaluealsoprovidesaboundonhowfaris reduces to solving a semidefinite program whose optimal value also provides a bound on how far is f(\y)fromtheunknownoptimalvalue from the unknown optimal value f^*.Thesizeofthesemidefiniteprogramcanbeadaptedtothecomputationalcapabilitiesavailable.Moreover,ifoneusesthe. The size of the semidefinite program can be adapted to the computational capabilities available. Moreover, if one uses the \ell_1norm,then-norm, then \tilde{f}$ takes a simple and explicit canonical form. Some variations are also discussed.Comment: 25 pages; to appear in Math. Oper. Res; Rapport LAAS no. 1114
    corecore